Vol 59, No 3 (2014)

Significance of modern methods for laboratory detection of rabies agents and identification of the zoonose immunological survey

Abstract

Analytical review of modern methods of the laboratory detection of rabies and findings of our research indicate high sensitivity and specificity of methods for rapid identification of rabies agents, such as ELISA, reverse-transcriptase PCR for identification of the rabies virus genome, and rabies virus isolation in rat Gasserian ganglion neurinoma, as well as their potential to be included into the State Quality Standard for early detection of rabies in animals to reduce the infection risk among humans and animals.
Problems of Virology. 2014;59(3):5-10
pages 5-10 views

Genetic characterization of the Sakhalin virus (SAKV), Paramushir virus (PMRV) (Sakhalin group, Nairovirus, Bunyaviridae), and Rukutama virus (RUKV) (Uukuniemi group, Phlebovirus, Bunyaviridae) isolated from the obligate parasites of the colonial sea-birds ticks Ixodes (Ceratixodes) uriae, White 1852 and I. signatus Birulya, 1895 in the water area of sea of the Okhotsk and Bering sea

Abstract

Full-length genomes of the Sakhalin virus (SAKH) and Paramushir virus (PRMV) (Sakhalin group, Nairovirus, Bunyaviridae) isolated from the ticks Ixodes uriae White 1852 were sequenced using the next-generation sequencing (Genbank iD: KF801659, KF801656). SAKV and PRMV have 81% identity for the part of RNA-dependent RNA-polymerase (RdRp) on the nucleotide level and 98.5% on the amino acid level. Full-length genome comparison shows that SAKV have, in average, from 25% (N-protein, S-segment) to 50% (RdRp, L-segment) similarity with the nairoviruses. The maximum value of the amino acid similarity (50.3% for RdRp) SAKV have with the Crimean-Congo hemorrhagic fever virus (CCHFV) and Dugbe virus (DUGV), which are also associated with the Ixodidae ticks. Another virus studied is Rukutama virus (RUKV) (isolated from ticks I. signatus Birulya, 1895) that recently was classified (based on morphology and antigenic reaction) to the Nairovirus genus, presumably to the Sakhalin group. in this work the genome of the RUKV was sequenced (KF892052-KF892054) and RUKV was classified as a member of the Uukuniemi group (Phlebovirus, Bunyaviridae). RUKV is closely related (93.0-95.5% similarity) with our previously described Komandory virus (KOMV). RUKV and KoMv form separate phylogenetic line neighbor of Manawa virus (MWAV) isolated from the ticks Argas abdussalami Hoogstraal et McCarthy, 1965 in Pakistan. The value of the similarity between RUCV and MWAV is 65-74% on the amino acid level.
Problems of Virology. 2014;59(3):11-17
pages 11-17 views

Taxonomic status of the Chim virus (CHIMV) (Bunyaviridae, Nairovirus, Qalyub group) isolated from the Ixodidae and Argasidae ticks collected in the great gerbil (Rhombomys opimus Lichtenstein, 1823) (Muridae, Gerbillinae) burrows in Uzbekistan and Kazakhstan

Abstract

Full-length genome of the Chim virus (CHiMV) (strain LEiV-858Uz) was sequenced using the next-generation sequencing approach (iD GenBank: KF801656). The CHiMV/LEiV-858Uz was isolated from the Ornithodoros tartakovskyi Olenev, 1931 ticks collected in the great gerbil (Rhombomys opimus Lichtenstein, 1823) burrow in Uzbekistan near Chim town (Kashkadarinsky region) in July of 1971. Later, four more CHiMV strains were isolated from the O. tartakovskyi, O. papillipes Birula, 1895, Rhipicephalus turanicus Pomerantsev, 1936 collected in the great gerbil burrows in Kashkadarinsky, Bukhara, and Syrdarya regions of Uzbekistan, and three strains - from the Hyalomma asiaticum Schulze et Schlottke, 1930 from the great gerbil burrows in Dzheskazgan region of Kazakhstan. The virus is a potential pathogen of humans and camels. The phylogenetic analysis revealed that the CHiMV is a novel member of the Nairovirus genus (Bunyaviridae) and closely related to the Qalyub virus (QYBV), which is prototype for the group of the same name. The amino acid homology between the CHiMV and QYBV is 87% for the RdRp catalytic center (L-segment) that is coincident with both QYBV and CHiMV associated with the Ornithodoros ticks and burrow of rodents as well. The CHiMV homologies with other nairoviruses are 30-40% for the amino acid sequences of precursor polyprotein GnGc (М-segment), whereas 50% - for the nucleocapsid N (S-segment). The data obtained permit to classify the CHiMV as a member of the QYBV group in the genus of Nairovirus (Bunyaviridae).
Problems of Virology. 2014;59(3):18-23
pages 18-23 views

Taxonomic status of the Artashat virus (ARTSV) (Bunyaviridae, Nairovirus) isolated from the ticks Ornithodoros alactagalis Issaakjan, 1936 and O. verrucosus Olenev, Sassuchin et Fenuk, 1934 (Argasidae Koch, 1844) collected in Transcaucasia

Abstract

The Artashat virus (ARTSV) was originally isolated from the Ornithodoros alactagalis Issaakjan, 1936 (Argasidae Koch, 1844), which were collected in the burrow of small five-toed jerboa (Allactaga elater Lichtenstein, 1825) in Armenia in 1972. Later, the ARTSV was isolated from the O. verrucosus Olenev, Sassuchin et Fenuk, 1934 collected in the burrows of Persian gerbil (Meriones persicus Blanford, 1875) in Azerbaijan. Based on the virion morphology, the ARTSV was assigned to the Bunyaviridae viruses. In this work, the ARTSV genome was partially sequenced (GenBank ID: KF801650) and it was shown that the ARTSV is a new member of the Nairovirus genus. ARTSV has from 42% (Issyk-Kul virus) to 58% (Raza virus, Hughes group) similarity with the nairoviruses for nucleotide sequence of part of RNA-dependent RNA-polymerase (RdRp). The similarity on the amino acid level is 65-70%. Low level of homology and the equidistant position of the ARTSV on phylogenetic tree indicate that the ARTSV is a new prototype species of the Nairovirus genus (Bunyaviridae) forming a separate phylogenetic branch.
Problems of Virology. 2014;59(3):24-28
pages 24-28 views

Isolation of the Chikungunya virus in Moscow from the Indonesian visitor (September, 2013)

Abstract

The results ofthe virological identification ofthe Chikungunya fever case in Moscow (September, 2013) in an Indonesian visitor are presented. The clinic, electron microscopy, and molecular genetic data are discussed. The Ghikungunya virus (CHIKV) strain CHIKV/LEIV-Moscow/1/2013 belonging to the Asian genotype (ID GenBank KF872195) was deposited into the Russian State Collection of viruses (GKV 1239; 18.11.2013).
Problems of Virology. 2014;59(3):28-34
pages 28-34 views

Detection of conservative and variable epitopes of the pandemic influenza virus A(H1N1)pdm09 hemagglutinin using monoclonal antibodies

Abstract

The goal of this work was to analyze the antigenic structure of the hemagglutinin (Ha) of the pandemic influenza virus A(H1N1)pdm09 using monoclonal antibodies (MAbs) and to develop a sandwich ELisA for identification of pandemic strains. competitive ELIsA demonstrated that 6 MAbs against Ha of the pandemic influenza А/ iiV-Moscow/01/2009 (H1N1)pdm09 virus identified six epitopes. Binding of MAbs with 22 strains circulating in Russian Federation during 2009-2012 was analyzed in the hemagglutination-inhibition test (HI). The MAbs differed considerably in their ability to decrease the HI activity of these strains. MAb 5F7 identified all examined strains; MAbs 3А3 and 10G2 reacted with the majority of them. A highly sensitive sandwich ELISA was constructed based on these three MAbs that can differentiate the pandemic influenza strains from the seasonal influenza virus. The constancy of the HA epitope that reacts with MAb 5F7 provides its use for identification of the pandemic influenza strains in HI test. MAbs 3D9, 6A3 and 1Е7 are directed against the variable HA epitopes, being sensitive to several amino acid changes in Sa, Sb, and Ca 2 antigenic sites and in receptor binding site. These MAbs can be used to detect differences in HA structure and to study the antigenic drift of the pandemic influenza virus A(H1N1)pdm09.
Problems of Virology. 2014;59(3):34-40
pages 34-40 views

PH-DEPENDENT REARRANGEMENTS IN THE INFLUENZA A VIRUS

Abstract

The influenza virus possesses two modules: internal ribonucleoprotein (RNP) containing the viral genome RNA and external lipid envelope with transmembrane ionic channel protein M2 and embedded glycoproteins hemagglutinin (HA) and neuraminidase (NA) forming surface spike ends. These modules are combined in a whole virion by the matrix protein M1. The effect of the acidic pH 4,2-4,5 on the influenza virus grown in MDCK-H cells was tested. The A/Aichi/68 (H3N2) virus synthesized in MDCK-H cells was shown to contain uncleaved HA0 (m.w. 78 kD) and provide low infectivity. This virus was resistant to acidic medium and non-permeable to the phosphotungsten acid (PTA) used in electron microscopy as a contrast stain, and did not reduce infectious potential after acidic treatment. The trypsin-activated virus containing cleaved HA1 (56 kD)+HA2 (22 kD) was sensitive to acidic exposition resulting in the appearance of permeability to PTA, reduction of infectivity, enhancement of the M1-RNP interlink. These data indicate that the structural form of the cleaved HA1+HA2 surface hemagglutinin coordinates a transmembrane interaction between surface and internal virus components.
Problems of Virology. 2014;59(3):41-46
pages 41-46 views
pages 47-47 views


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies