Analysis of HIV-1 (Human immunodeficiency virus-1, Lentivirus, Orthoretrovirinae, Retroviridae) Nef protein polymorphism of variants circulating in the former USSR countries
- Authors: Gromov K.B.1, Kazennova E.V.1, Kireev D.E.2, Murzakova A.V.2, Lopatukhin A.E.2, Bobkova M.R.1
-
Affiliations:
- National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya
- Central Research Institute of Epidemiology
- Issue: Vol 64, No 6 (2019)
- Pages: 281-290
- Section: ORIGINAL RESEARCH
- Submitted: 03.02.2020
- Accepted: 03.02.2020
- Published: 20.12.2019
- URL: https://virusjour.crie.ru/jour/article/view/255
- DOI: https://doi.org/10.36233/0507-4088-2019-64-6-281-290
- ID: 255
Cite item
Full Text
Abstract
Goals and tasks. The main goal of the work was to analyze the characteristics of Nef protein of HIV-1 variant A6, which dominates in the countries of the former USSR. The objective of the work was a comparative analysis of natural polymorphisms in the nef gene of HIV-1 sub-subtypes A6 and A1 and subtype B.
Material and methods. The sequences of the HIV-1 genome obtained during the previous work of the laboratory were used, as well as the reference sequence from GenBank. In this work, Sanger sequencing and new generation sequencing methods, as well as bioinformation analysis methods were used.
Results and discussion. The existence of noticeable differences in the prevalence of Nef natural polymorphisms (A32P, E38D, I43V, A54D, Q104K, H116N, Y120F, Y143F, V168M, H192T, V194R, R35Q, D108E, Y135F, E155K, E182M, R184K and F191L), some of which are characteristic mutations for variant A6, was shown. Conclusion. Characteristic substitutions were found in the Nef structure, potentially capable of weakening the replicative properties of HIV-1 variant A6.
Keywords
About the authors
K. B. Gromov
National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya
Email: fake@neicon.ru
ORCID iD: 0000-0002-9316-1975
Moscow, 123098 Russian Federation
E. V. Kazennova
National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya
Email: fake@neicon.ru
ORCID iD: 0000-0002-7896-2379
Moscow, 123098 Russian Federation
D. E. Kireev
Central Research Institute of Epidemiology
Email: fake@neicon.ru
ORCID iD: 0000-0002-1390-8021
Moscow, 111123 Russian Federation
A. V. Murzakova
Central Research Institute of Epidemiology
Email: fake@neicon.ru
ORCID iD: 0000-0002-2826-699X
Moscow, 111123 Russian Federation
A. E. Lopatukhin
Central Research Institute of Epidemiology
Email: fake@neicon.ru
ORCID iD: 0000-0002-7912-4270
Moscow, 111123 Russian Federation
M. R. Bobkova
National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya
Author for correspondence.
Email: mrbobkova@mail.ru
ORCID iD: 0000-0001-5481-8957
MD, PhD, Dr Biol Sci, chirf researcher, head of T-lymphotropoc viruses
laboratory, Ivanovsky Institute of Virology
Moscow, 123098, 18, Gamaleya street, Russia
References
- Saksena N.K., Ge Y.C., Wang B., Xiang S.H., Dwyer D.E., Randle C., et al. An HIV-1 infected long-term non-progressor (LTNP): molecular analysis of HIV-1 strains in the vpr and nef genes. Ann. Acad. Med. Singapore. 1996; 25(6): 848-54.
- Wang B. Viral factors in non-progression. Front. Immunol. 2013; 4: 355. Doi: https://doi.org/10.3389/fimmu.2013.00355
- Arhel N.J., Kirchhoff F. Implications of Nef: host cell interactions in viral persistence and progression to AIDS. Curr. Top. Microbiol. Immunol. 2009; 339: 147-75. Doi: https://doi.org/10.1007/978-3-642-02175-6_8
- Basmaciogullari S., Pizzato M. The activity of Nef on HIV-1 infectivity. Front. Microbiol. 2014; 5: 232. Doi: https://doi.org/10.3389/fmicb.2014.00232
- Pereira E.A., daSilva L.L. HIV-1 Nef: Taking Control of Protein Trafficking. Traffic. 2016; 17(9): 976-96. Doi: https://doi.org/10.1111/tra.12412
- Jager S., Cimermancic P., Gulbahce N., Johnson J.R., McGovern K.E., Clarke S.C., et al. Global landscape of HIV-human protein complexes. Nature. 2011; 481(7381): 365-70. Doi: https://doi.org/10.1038/nature10719
- Dekaban G.A., Dikeakos J.D. HIV-I Nef inhibitors: a novel class of HIV-specific immune adjuvants in support of a cure. AIDS Res. Ther. 2017; 14(1): 53. Doi: https://doi.org/10.1186/s12981-017-0175-6
- Van den Broeke C., Radu M., Chernoff J., Favoreel H.W. An emerging role for p21-activated kinases (Paks) in viral infections. Trends Cell Biol. 2010; 20(3): 160-9. Doi: https://doi.org/10.1016/j.tcb.2009.12.005
- Stolp B., Fackler O.T. How HIV takes advantage of the cytoskeleton in entry and replication. Viruses. 2011; 3(4): 293-311. Doi: https://doi.org/10.3390/v3040293
- Sourisseau M., Sol-Foulon N., Porrot F., Blanchet F., Schwartz O. Inefficient human immunodeficiency virus replication in mobile lymphocytes. J. Virol. 2007; 81(2):1000-12. Doi: https://doi.org/10.1128/JVI.01629-06
- Vermeire J., Vanbillemont G., Witkowski W.,Verhasselt B. The Nefinfectivity enigma: mechanisms of enhanced lentiviral infection. Curr. HIV Res. 2011; 9(7): 474-89. Doi: https://doi.org/10.2174/157016211798842099
- Rosa A., Chande A., Ziglio S., De Sanctis V., Bertorelli R., Goh S.L., et al. HIV-1 Nef promotes infection by excluding SERINC5 from virion incorporation. Nature. 2015; 526(7572): 212-7. Doi: https://doi.org/10.1038/nature15399
- Lama J. The physiological relevance of CD4 receptor down-modulation during HIV infection. Curr. HIV Res. 2003; 1(2): 167-84. Doi: https://doi.org/10.2174/1570162033485276
- Toyoda M., Ogata Y., Mahiti M., Maeda Y., Kuang X.T., Miura T., et al. Differential Ability of Primary HIV-1 Nef Isolates To Downregulate HIV-1 Entry Receptors. J. Virol. 2015; 89(18): 9639-52. Doi: https://doi.org/10.1128/JVI.01548-15
- Dikeakos J.D., Thomas L., Kwon G., Elferich J., Shinde U., Thomas G. An interdomain binding site on HIV-1 Nef interacts with PACS-1 and PACS-2 on endosomes to down-regulate MHC-I. Mol. Biol. Cell. 2012; 23(11): 2184-97. Doi: https://doi.org/10.1091/mbc.E11-11-0928
- Lewis M.J., Lee P., Ng H.L.,Yang O.O. Immune selection in vitro reveals human immunodeficiency virus type 1 Nef sequence motifs important for its immune evasion function in vivo. J. Virol. 2012; 86(13): 7126-35. Doi: https://doi.org/10.1128/JVI.00878-12
- Olivetta E., Arenaccio C., Manfredi F., Anticoli S., Federico M. The Contribution of Extracellular Nef to HIV-Induced Pathogenesis. Curr. Drug Targets. 2016; 17(1): 46-53. Doi: https://doi.org/10.2174/1389450116666151001110126
- Lamers S.L., Poon A.F., McGrath M.S. HIV-1 nef protein structures associated with brain infection and dementia pathogenesis. PLoS One. 2011; 6(2): e16659. Doi: https://doi.org/10.1371/journal.pone.0016659
- Anand A.R., Rachel G., Parthasarathy D. HIV Proteins and Endothelial Dysfunction: Implications in Cardiovascular Disease. Front. Cardiovasc. Med. 2018; 5: 185. Doi: https://doi.org/10.3389/fcvm.2018.00185
- Almodovar S., Knight R., Allshouse A.A., Roemer S., Lozupone C., McDonald D., et al. Human Immunodeficiency Virus nef signature sequences are associated with pulmonary hypertension. AIDS Res. Hum. Retroviruses. 2012; 28(6): 607-18. Doi: https://doi.org/10.1089/AID.2011.0021
- Emert-Sedlak L.A., Loughran H.M., Shi H., Kulp J.L., Shu S.T., Zhao J., et al. Synthesis and evaluation of orally active small molecule HIV-1 Nef antagonists. Bioorg. Med. Chem. Lett. 2016; 26(5): 1480-4. Doi: https://doi.org/10.1016/j.bmcl.2016.01.043
- Hunegnaw R., Vassylyeva M., Dubrovsky L., Pushkarsky T., Sviridov D., Anashkina A.A., et al. Interaction Between HIV-1 Nef and Calnexin: From Modeling to Small Molecule Inhibitors Reversing HIV-Induced Lipid Accumulation. Arterioscler. Thromb. Vasc. Biol. 2016; 36(9): 1758-71. Doi: https://doi.org/10.1161/ATVBAHA.116.307997
- Corro G., Rocco C.A., De Candia C., Catano G., Turk G., Mangano A., et al. Genetic and functional analysis of HIV type 1 nef gene derived from long-term nonprogressor children: association of attenuated variants with slow progression to pediatric AIDS. AIDS Res. Hum. Retroviruses. 2012; 28(12): 1617-26. Doi: https://doi.org/10.1089/AID.2012.0020
- Foster J.L., Denial S.J., Temple B.R., Garcia J.V. Mechanisms of HIV-1 Nef function and intracellular signaling. J. Neuroimmune Pharmacol. 2011; 6(2): 230-46. Doi: https://doi.org/10.1007/s11481-011-9262-y
- O’Neill E., Kuo L.S., Krisko J.F., Tomchick D.R., Garcia J.V., Foster J.L. Dynamic evolution of the human immunodeficiency virus type 1 pathogenic factor, Nef. J. Virol. 2006; 80(3): 1311-20. Doi: https://doi.org/10.1128/JVI.80.3.1311-1320.2006
- Usmani S.M., Murooka T.T., Deruaz M., Koh W.H., Sharaf R.R., Di Pilato M., et al. HIV-1 Balances the Fitness Costs and Benefits of Disrupting the Host Cell Actin Cytoskeleton Early after Mucosal Transmission. Cell. Host Microbe. 2019; 25(1): 73-86. Doi: https://doi.org/10.1016/j.chom.2018.12.008
- Kumar S., Stecher G.,Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016; 33(7): 1870-4. Doi: https://doi.org/10.1093/molbev/msw054
- Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol. Biol. Evol. 2013; 30(12): 2725-9. Doi: https://doi.org/10.1093/molbev/mst197
- Golosova O., Henderson R., Vaskin Y., Gabrielian A., Grekhov G., Nagarajan V., et al. Unipro UGENE NGS pipelines and components for variant calling, RNA-seq and ChIP-seq data analyses. PeerJ. 2014; 2: e644. Doi: https://doi.org/10.7717/peerj.644
- Nguyen L.T., Schmidt H.A., von Haeseler A., Minh B.Q. IQTREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Mol. Biol. Evol. 2015; 32(1): 268-74. Doi: https://doi.org/10.1093/molbev/msu300
- Ratner L., Haseltine W., Patarca R., Livak K.J., Starcich B., Josephs S.F., et al. Complete Nucleotide-Sequence of the AIDS Virus, HTLV-III. Nature. 1985; 313(6000): 277-84. Doi: https://doi.org/10.1038/313277a0