Анализ полиморфизма белка Nef вариантов ВИЧ-1 (Human immunodeficiency virus-1, Lentivirus, Orthoretrovirinae, Retroviridae), циркулирующих в странах бывшего СССР
- Авторы: Громов К.Б.1, Киреев Д.Е.2, Мурзакова А.В.2, Лопатухин А.Э.2, Казеннова Е.В.1, Бобкова М.Р.1
-
Учреждения:
- Институт вирусологии им. Д.И. Ивановского, ФГБУ «Национальный исследовательский центр эпидемиологии и микробиологии имени почётного академика Н.Ф. Гамалеи» Минздрава России
- ФБУН «Центральный научно-исследовательский институт эпидемиологии» Роспотребнадзора
- Выпуск: Том 64, № 6 (2019)
- Страницы: 281-290
- Раздел: ОРИГИНАЛЬНЫЕ ИССЛЕДОВАНИЯ
- Дата подачи: 03.02.2020
- Дата принятия к публикации: 03.02.2020
- Дата публикации: 20.12.2019
- URL: https://virusjour.crie.ru/jour/article/view/255
- DOI: https://doi.org/10.36233/0507-4088-2019-64-6-281-290
- ID: 255
Цитировать
Полный текст
Аннотация
Цели и задачи. Основной целью работы был анализ особенностей белка Nef варианта А6 ВИЧ-1, доминирующего
в странах бывшего СССР. Задачей работы послужил сравнительный анализ естественных полиморфизмов в генe nef ВИЧ-1 суб-субтипов А6 и А1 и субтипа B.
Материал и методы. Материалом для работы послужили последовательности генома ВИЧ-1, полученные в ходе предшествующей работы лаборатории, а также референс-последовательности из GenBank. В работе использованы методы секвенирования по Сэнгеру и секвенирования нового поколения, а также методы биоинформационного анализа.
Результаты и обсуждение. Продемонстрированы различия в частоте встречаемости естественных полиморфизмов белка Nef (A32P, E38D, I43V, A54D, Q104K, H116N, Y120F, Y143F, V168M, H192T, V194R, R35Q, D108E, Y135F, E155K, E182M, R184K и F191L), некоторые из которых являются характеристическими мутациями для варианта А6.
Заключение. Обнаружены характеристические замены в составе Nef, потенциально способные ослаблять репликативные свойства варианта А6 ВИЧ-1.
Ключевые слова
Об авторах
К. Б. Громов
Институт вирусологии им. Д.И. Ивановского, ФГБУ «Национальный исследовательский центр эпидемиологии и микробиологии имени почётного академика Н.Ф. Гамалеи» Минздрава России
Email: fake@neicon.ru
ORCID iD: 0000-0002-9316-1975
123098, г. Москва Россия
Д. Е. Киреев
ФБУН «Центральный научно-исследовательский институт эпидемиологии» Роспотребнадзора
Email: fake@neicon.ru
ORCID iD: 0000-0002-7896-2379
111123, г. Москва Россия
А. В. Мурзакова
ФБУН «Центральный научно-исследовательский институт эпидемиологии» Роспотребнадзора
Email: fake@neicon.ru
ORCID iD: 0000-0002-1390-8021
111123, г. Москва Россия
А. Э. Лопатухин
ФБУН «Центральный научно-исследовательский институт эпидемиологии» Роспотребнадзора
Email: fake@neicon.ru
ORCID iD: 0000-0002-2826-699X
111123, г. Москва Россия
Е. В. Казеннова
Институт вирусологии им. Д.И. Ивановского, ФГБУ «Национальный исследовательский центр эпидемиологии и микробиологии имени почётного академика Н.Ф. Гамалеи» Минздрава России
Email: fake@neicon.ru
ORCID iD: 0000-0002-7912-4270
123098, г. Москва Россия
М. Р. Бобкова
Институт вирусологии им. Д.И. Ивановского, ФГБУ «Национальный исследовательский центр эпидемиологии и микробиологии имени почётного академика Н.Ф. Гамалеи» Минздрава России
Автор, ответственный за переписку.
Email: mrbobkova@mail.ru
ORCID iD: 0000-0001-5481-8957
доктор биологических наук, заведующая лабораторией вирусов лейкозов
123098, г. Москва Россия
Список литературы
- Saksena N.K., Ge Y.C., Wang B., Xiang S.H., Dwyer D.E., Randle C., et al. An HIV-1 infected long-term non-progressor (LTNP): molecular analysis of HIV-1 strains in the vpr and nef genes. Ann. Acad. Med. Singapore. 1996; 25(6): 848-54.
- Wang B. Viral factors in non-progression. Front. Immunol. 2013; 4: 355. Doi: https://doi.org/10.3389/fimmu.2013.00355
- Arhel N.J., Kirchhoff F. Implications of Nef: host cell interactions in viral persistence and progression to AIDS. Curr. Top. Microbiol. Immunol. 2009; 339: 147-75. Doi: https://doi.org/10.1007/978-3-642-02175-6_8
- Basmaciogullari S., Pizzato M. The activity of Nef on HIV-1 infectivity. Front. Microbiol. 2014; 5: 232. Doi: https://doi.org/10.3389/fmicb.2014.00232
- Pereira E.A., daSilva L.L. HIV-1 Nef: Taking Control of Protein Trafficking. Traffic. 2016; 17(9): 976-96. Doi: https://doi.org/10.1111/tra.12412
- Jager S., Cimermancic P., Gulbahce N., Johnson J.R., McGovern K.E., Clarke S.C., et al. Global landscape of HIV-human protein complexes. Nature. 2011; 481(7381): 365-70. Doi: https://doi.org/10.1038/nature10719
- Dekaban G.A., Dikeakos J.D. HIV-I Nef inhibitors: a novel class of HIV-specific immune adjuvants in support of a cure. AIDS Res. Ther. 2017; 14(1): 53. Doi: https://doi.org/10.1186/s12981-017-0175-6
- Van den Broeke C., Radu M., Chernoff J., Favoreel H.W. An emerging role for p21-activated kinases (Paks) in viral infections. Trends Cell Biol. 2010; 20(3): 160-9. Doi: https://doi.org/10.1016/j.tcb.2009.12.005
- Stolp B., Fackler O.T. How HIV takes advantage of the cytoskeleton in entry and replication. Viruses. 2011; 3(4): 293-311. Doi: https://doi.org/10.3390/v3040293
- Sourisseau M., Sol-Foulon N., Porrot F., Blanchet F., Schwartz O. Inefficient human immunodeficiency virus replication in mobile lymphocytes. J. Virol. 2007; 81(2):1000-12. Doi: https://doi.org/10.1128/JVI.01629-06
- Vermeire J., Vanbillemont G., Witkowski W.,Verhasselt B. The Nefinfectivity enigma: mechanisms of enhanced lentiviral infection. Curr. HIV Res. 2011; 9(7): 474-89. Doi: https://doi.org/10.2174/157016211798842099
- Rosa A., Chande A., Ziglio S., De Sanctis V., Bertorelli R., Goh S.L., et al. HIV-1 Nef promotes infection by excluding SERINC5 from virion incorporation. Nature. 2015; 526(7572): 212-7. Doi: https://doi.org/10.1038/nature15399
- Lama J. The physiological relevance of CD4 receptor down-modulation during HIV infection. Curr. HIV Res. 2003; 1(2): 167-84. Doi: https://doi.org/10.2174/1570162033485276
- Toyoda M., Ogata Y., Mahiti M., Maeda Y., Kuang X.T., Miura T., et al. Differential Ability of Primary HIV-1 Nef Isolates To Downregulate HIV-1 Entry Receptors. J. Virol. 2015; 89(18): 9639-52. Doi: https://doi.org/10.1128/JVI.01548-15
- Dikeakos J.D., Thomas L., Kwon G., Elferich J., Shinde U., Thomas G. An interdomain binding site on HIV-1 Nef interacts with PACS-1 and PACS-2 on endosomes to down-regulate MHC-I. Mol. Biol. Cell. 2012; 23(11): 2184-97. Doi: https://doi.org/10.1091/mbc.E11-11-0928
- Lewis M.J., Lee P., Ng H.L.,Yang O.O. Immune selection in vitro reveals human immunodeficiency virus type 1 Nef sequence motifs important for its immune evasion function in vivo. J. Virol. 2012; 86(13): 7126-35. Doi: https://doi.org/10.1128/JVI.00878-12
- Olivetta E., Arenaccio C., Manfredi F., Anticoli S., Federico M. The Contribution of Extracellular Nef to HIV-Induced Pathogenesis. Curr. Drug Targets. 2016; 17(1): 46-53. Doi: https://doi.org/10.2174/1389450116666151001110126
- Lamers S.L., Poon A.F., McGrath M.S. HIV-1 nef protein structures associated with brain infection and dementia pathogenesis. PLoS One. 2011; 6(2): e16659. Doi: https://doi.org/10.1371/journal.pone.0016659
- Anand A.R., Rachel G., Parthasarathy D. HIV Proteins and Endothelial Dysfunction: Implications in Cardiovascular Disease. Front. Cardiovasc. Med. 2018; 5: 185. Doi: https://doi.org/10.3389/fcvm.2018.00185
- Almodovar S., Knight R., Allshouse A.A., Roemer S., Lozupone C., McDonald D., et al. Human Immunodeficiency Virus nef signature sequences are associated with pulmonary hypertension. AIDS Res. Hum. Retroviruses. 2012; 28(6): 607-18. Doi: https://doi.org/10.1089/AID.2011.0021
- Emert-Sedlak L.A., Loughran H.M., Shi H., Kulp J.L., Shu S.T., Zhao J., et al. Synthesis and evaluation of orally active small molecule HIV-1 Nef antagonists. Bioorg. Med. Chem. Lett. 2016; 26(5): 1480-4. Doi: https://doi.org/10.1016/j.bmcl.2016.01.043
- Hunegnaw R., Vassylyeva M., Dubrovsky L., Pushkarsky T., Sviridov D., Anashkina A.A., et al. Interaction Between HIV-1 Nef and Calnexin: From Modeling to Small Molecule Inhibitors Reversing HIV-Induced Lipid Accumulation. Arterioscler. Thromb. Vasc. Biol. 2016; 36(9): 1758-71. Doi: https://doi.org/10.1161/ATVBAHA.116.307997
- Corro G., Rocco C.A., De Candia C., Catano G., Turk G., Mangano A., et al. Genetic and functional analysis of HIV type 1 nef gene derived from long-term nonprogressor children: association of attenuated variants with slow progression to pediatric AIDS. AIDS Res. Hum. Retroviruses. 2012; 28(12): 1617-26. Doi: https://doi.org/10.1089/AID.2012.0020
- Foster J.L., Denial S.J., Temple B.R., Garcia J.V. Mechanisms of HIV-1 Nef function and intracellular signaling. J. Neuroimmune Pharmacol. 2011; 6(2): 230-46. Doi: https://doi.org/10.1007/s11481-011-9262-y
- O’Neill E., Kuo L.S., Krisko J.F., Tomchick D.R., Garcia J.V., Foster J.L. Dynamic evolution of the human immunodeficiency virus type 1 pathogenic factor, Nef. J. Virol. 2006; 80(3): 1311-20. Doi: https://doi.org/10.1128/JVI.80.3.1311-1320.2006
- Usmani S.M., Murooka T.T., Deruaz M., Koh W.H., Sharaf R.R., Di Pilato M., et al. HIV-1 Balances the Fitness Costs and Benefits of Disrupting the Host Cell Actin Cytoskeleton Early after Mucosal Transmission. Cell. Host Microbe. 2019; 25(1): 73-86. Doi: https://doi.org/10.1016/j.chom.2018.12.008
- Kumar S., Stecher G.,Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016; 33(7): 1870-4. Doi: https://doi.org/10.1093/molbev/msw054
- Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol. Biol. Evol. 2013; 30(12): 2725-9. Doi: https://doi.org/10.1093/molbev/mst197
- Golosova O., Henderson R., Vaskin Y., Gabrielian A., Grekhov G., Nagarajan V., et al. Unipro UGENE NGS pipelines and components for variant calling, RNA-seq and ChIP-seq data analyses. PeerJ. 2014; 2: e644. Doi: https://doi.org/10.7717/peerj.644
- Nguyen L.T., Schmidt H.A., von Haeseler A., Minh B.Q. IQTREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Mol. Biol. Evol. 2015; 32(1): 268-74. Doi: https://doi.org/10.1093/molbev/msu300
- Ratner L., Haseltine W., Patarca R., Livak K.J., Starcich B., Josephs S.F., et al. Complete Nucleotide-Sequence of the AIDS Virus, HTLV-III. Nature. 1985; 313(6000): 277-84. Doi: https://doi.org/10.1038/313277a0