Анализ полиморфизма белка Nef вариантов ВИЧ-1 (Human immunodeficiency virus-1, Lentivirus, Orthoretrovirinae, Retroviridae), циркулирующих в странах бывшего СССР

Обложка


Цитировать

Полный текст

Аннотация

Введение. Белок Nef вируса иммунодефицита человека (ВИЧ) является одним из ключевых факторов, определяющих инфекционность и репликативные свойства ВИЧ. Обладая способностью к взаимодействию с многочисленными белками хозяйской клетки, этот белок обеспечивает максимальный уровень продукции вируса и защиту его от иммунной системы. Основные активности Nef связывают со снижением экспрессии CD4-рецептора и молекул главного комплекса гистосовместимости I типа (MHC-I), а также с перестройкой цитоскелета. Эти свойства белка определяются структурой нескольких мотивов в составе кодирующего его гена nef, имеющих вариабельную природу.
Цели и задачи. Основной целью работы был анализ особенностей белка Nef варианта А6 ВИЧ-1, доминирующего
в странах бывшего СССР. Задачей работы послужил сравнительный анализ естественных полиморфизмов в генe 
nef ВИЧ-1 суб-субтипов А6 и А1 и субтипа B.
Материал и методы. Материалом для работы послужили последовательности генома ВИЧ-1, полученные в ходе предшествующей работы лаборатории, а также референс-последовательности из GenBank. В работе использованы методы секвенирования по Сэнгеру и секвенирования нового поколения, а также методы биоинформационного анализа.
Результаты и обсуждение. Продемонстрированы различия в частоте встречаемости естественных полиморфизмов белка Nef (A32P, E38D, I43V, A54D, Q104K, H116N, Y120F, Y143F, V168M, H192T, V194R, R35Q, D108E, Y135F, E155K, E182M, R184K и F191L), некоторые из которых являются характеристическими мутациями для варианта А6.
Заключение. Обнаружены характеристические замены в составе Nef, потенциально способные ослаблять репликативные свойства варианта А6 ВИЧ-1.

Об авторах

К. Б. Громов

Институт вирусологии им. Д.И. Ивановского, ФГБУ «Национальный исследовательский центр эпидемиологии и микробиологии имени почётного академика Н.Ф. Гамалеи» Минздрава России

Email: fake@neicon.ru
ORCID iD: 0000-0002-9316-1975
123098, г. Москва Россия

Д. Е. Киреев

ФБУН «Центральный научно-исследовательский институт эпидемиологии» Роспотребнадзора

Email: fake@neicon.ru
ORCID iD: 0000-0002-7896-2379
111123, г. Москва Россия

А. В. Мурзакова

ФБУН «Центральный научно-исследовательский институт эпидемиологии» Роспотребнадзора

Email: fake@neicon.ru
ORCID iD: 0000-0002-1390-8021
111123, г. Москва Россия

А. Э. Лопатухин

ФБУН «Центральный научно-исследовательский институт эпидемиологии» Роспотребнадзора

Email: fake@neicon.ru
ORCID iD: 0000-0002-2826-699X
111123, г. Москва Россия

Е. В. Казеннова

Институт вирусологии им. Д.И. Ивановского, ФГБУ «Национальный исследовательский центр эпидемиологии и микробиологии имени почётного академика Н.Ф. Гамалеи» Минздрава России

Email: fake@neicon.ru
ORCID iD: 0000-0002-7912-4270
123098, г. Москва Россия

М. Р. Бобкова

Институт вирусологии им. Д.И. Ивановского, ФГБУ «Национальный исследовательский центр эпидемиологии и микробиологии имени почётного академика Н.Ф. Гамалеи» Минздрава России

Автор, ответственный за переписку.
Email: mrbobkova@mail.ru
ORCID iD: 0000-0001-5481-8957
доктор биологических наук, заведующая лабораторией вирусов лейкозов  

123098, г. Москва Россия

Список литературы

  1. Saksena N.K., Ge Y.C., Wang B., Xiang S.H., Dwyer D.E., Randle C., et al. An HIV-1 infected long-term non-progressor (LTNP): molecular analysis of HIV-1 strains in the vpr and nef genes. Ann. Acad. Med. Singapore. 1996; 25(6): 848-54.
  2. Wang B. Viral factors in non-progression. Front. Immunol. 2013; 4: 355. Doi: https://doi.org/10.3389/fimmu.2013.00355
  3. Arhel N.J., Kirchhoff F. Implications of Nef: host cell interactions in viral persistence and progression to AIDS. Curr. Top. Microbiol. Immunol. 2009; 339: 147-75. Doi: https://doi.org/10.1007/978-3-642-02175-6_8
  4. Basmaciogullari S., Pizzato M. The activity of Nef on HIV-1 infectivity. Front. Microbiol. 2014; 5: 232. Doi: https://doi.org/10.3389/fmicb.2014.00232
  5. Pereira E.A., daSilva L.L. HIV-1 Nef: Taking Control of Protein Trafficking. Traffic. 2016; 17(9): 976-96. Doi: https://doi.org/10.1111/tra.12412
  6. Jager S., Cimermancic P., Gulbahce N., Johnson J.R., McGovern K.E., Clarke S.C., et al. Global landscape of HIV-human protein complexes. Nature. 2011; 481(7381): 365-70. Doi: https://doi.org/10.1038/nature10719
  7. Dekaban G.A., Dikeakos J.D. HIV-I Nef inhibitors: a novel class of HIV-specific immune adjuvants in support of a cure. AIDS Res. Ther. 2017; 14(1): 53. Doi: https://doi.org/10.1186/s12981-017-0175-6
  8. Van den Broeke C., Radu M., Chernoff J., Favoreel H.W. An emerging role for p21-activated kinases (Paks) in viral infections. Trends Cell Biol. 2010; 20(3): 160-9. Doi: https://doi.org/10.1016/j.tcb.2009.12.005
  9. Stolp B., Fackler O.T. How HIV takes advantage of the cytoskeleton in entry and replication. Viruses. 2011; 3(4): 293-311. Doi: https://doi.org/10.3390/v3040293
  10. Sourisseau M., Sol-Foulon N., Porrot F., Blanchet F., Schwartz O. Inefficient human immunodeficiency virus replication in mobile lymphocytes. J. Virol. 2007; 81(2):1000-12. Doi: https://doi.org/10.1128/JVI.01629-06
  11. Vermeire J., Vanbillemont G., Witkowski W.,Verhasselt B. The Nefinfectivity enigma: mechanisms of enhanced lentiviral infection. Curr. HIV Res. 2011; 9(7): 474-89. Doi: https://doi.org/10.2174/157016211798842099
  12. Rosa A., Chande A., Ziglio S., De Sanctis V., Bertorelli R., Goh S.L., et al. HIV-1 Nef promotes infection by excluding SERINC5 from virion incorporation. Nature. 2015; 526(7572): 212-7. Doi: https://doi.org/10.1038/nature15399
  13. Lama J. The physiological relevance of CD4 receptor down-modulation during HIV infection. Curr. HIV Res. 2003; 1(2): 167-84. Doi: https://doi.org/10.2174/1570162033485276
  14. Toyoda M., Ogata Y., Mahiti M., Maeda Y., Kuang X.T., Miura T., et al. Differential Ability of Primary HIV-1 Nef Isolates To Downregulate HIV-1 Entry Receptors. J. Virol. 2015; 89(18): 9639-52. Doi: https://doi.org/10.1128/JVI.01548-15
  15. Dikeakos J.D., Thomas L., Kwon G., Elferich J., Shinde U., Thomas G. An interdomain binding site on HIV-1 Nef interacts with PACS-1 and PACS-2 on endosomes to down-regulate MHC-I. Mol. Biol. Cell. 2012; 23(11): 2184-97. Doi: https://doi.org/10.1091/mbc.E11-11-0928
  16. Lewis M.J., Lee P., Ng H.L.,Yang O.O. Immune selection in vitro reveals human immunodeficiency virus type 1 Nef sequence motifs important for its immune evasion function in vivo. J. Virol. 2012; 86(13): 7126-35. Doi: https://doi.org/10.1128/JVI.00878-12
  17. Olivetta E., Arenaccio C., Manfredi F., Anticoli S., Federico M. The Contribution of Extracellular Nef to HIV-Induced Pathogenesis. Curr. Drug Targets. 2016; 17(1): 46-53. Doi: https://doi.org/10.2174/1389450116666151001110126
  18. Lamers S.L., Poon A.F., McGrath M.S. HIV-1 nef protein structures associated with brain infection and dementia pathogenesis. PLoS One. 2011; 6(2): e16659. Doi: https://doi.org/10.1371/journal.pone.0016659
  19. Anand A.R., Rachel G., Parthasarathy D. HIV Proteins and Endothelial Dysfunction: Implications in Cardiovascular Disease. Front. Cardiovasc. Med. 2018; 5: 185. Doi: https://doi.org/10.3389/fcvm.2018.00185
  20. Almodovar S., Knight R., Allshouse A.A., Roemer S., Lozupone C., McDonald D., et al. Human Immunodeficiency Virus nef signature sequences are associated with pulmonary hypertension. AIDS Res. Hum. Retroviruses. 2012; 28(6): 607-18. Doi: https://doi.org/10.1089/AID.2011.0021
  21. Emert-Sedlak L.A., Loughran H.M., Shi H., Kulp J.L., Shu S.T., Zhao J., et al. Synthesis and evaluation of orally active small molecule HIV-1 Nef antagonists. Bioorg. Med. Chem. Lett. 2016; 26(5): 1480-4. Doi: https://doi.org/10.1016/j.bmcl.2016.01.043
  22. Hunegnaw R., Vassylyeva M., Dubrovsky L., Pushkarsky T., Sviridov D., Anashkina A.A., et al. Interaction Between HIV-1 Nef and Calnexin: From Modeling to Small Molecule Inhibitors Reversing HIV-Induced Lipid Accumulation. Arterioscler. Thromb. Vasc. Biol. 2016; 36(9): 1758-71. Doi: https://doi.org/10.1161/ATVBAHA.116.307997
  23. Corro G., Rocco C.A., De Candia C., Catano G., Turk G., Mangano A., et al. Genetic and functional analysis of HIV type 1 nef gene derived from long-term nonprogressor children: association of attenuated variants with slow progression to pediatric AIDS. AIDS Res. Hum. Retroviruses. 2012; 28(12): 1617-26. Doi: https://doi.org/10.1089/AID.2012.0020
  24. Foster J.L., Denial S.J., Temple B.R., Garcia J.V. Mechanisms of HIV-1 Nef function and intracellular signaling. J. Neuroimmune Pharmacol. 2011; 6(2): 230-46. Doi: https://doi.org/10.1007/s11481-011-9262-y
  25. O’Neill E., Kuo L.S., Krisko J.F., Tomchick D.R., Garcia J.V., Foster J.L. Dynamic evolution of the human immunodeficiency virus type 1 pathogenic factor, Nef. J. Virol. 2006; 80(3): 1311-20. Doi: https://doi.org/10.1128/JVI.80.3.1311-1320.2006
  26. Usmani S.M., Murooka T.T., Deruaz M., Koh W.H., Sharaf R.R., Di Pilato M., et al. HIV-1 Balances the Fitness Costs and Benefits of Disrupting the Host Cell Actin Cytoskeleton Early after Mucosal Transmission. Cell. Host Microbe. 2019; 25(1): 73-86. Doi: https://doi.org/10.1016/j.chom.2018.12.008
  27. Kumar S., Stecher G.,Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016; 33(7): 1870-4. Doi: https://doi.org/10.1093/molbev/msw054
  28. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol. Biol. Evol. 2013; 30(12): 2725-9. Doi: https://doi.org/10.1093/molbev/mst197
  29. Golosova O., Henderson R., Vaskin Y., Gabrielian A., Grekhov G., Nagarajan V., et al. Unipro UGENE NGS pipelines and components for variant calling, RNA-seq and ChIP-seq data analyses. PeerJ. 2014; 2: e644. Doi: https://doi.org/10.7717/peerj.644
  30. Nguyen L.T., Schmidt H.A., von Haeseler A., Minh B.Q. IQTREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Mol. Biol. Evol. 2015; 32(1): 268-74. Doi: https://doi.org/10.1093/molbev/msu300
  31. Ratner L., Haseltine W., Patarca R., Livak K.J., Starcich B., Josephs S.F., et al. Complete Nucleotide-Sequence of the AIDS Virus, HTLV-III. Nature. 1985; 313(6000): 277-84. Doi: https://doi.org/10.1038/313277a0

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Громов К.Б., Киреев Д.Е., Мурзакова А.В., Лопатухин А.Э., Казеннова Е.В., Бобкова М.Р., 2019

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС77-77676 от 29.01.2020.


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах