We should be prepared to smallpox re-emergence

Cover Page

Cite item


The review contains a brief analysis of the results of investigations conducted during 40 years after smallpox eradication and directed to study genomic organization and evolution of variola virus (VARV) and development of modern diagnostics, vaccines and chemotherapies of smallpox and other zoonotic orthopoxviral infections of humans. Taking into account that smallpox vaccination in several cases had adverse side effects, WHO recommended ceasing this vaccination after 1980 in all countries of the world. The result of this decision is that the mankind lost the collective immunity not only to smallpox, but also to other zoonotic orthopoxvirus infections. The ever more frequently recorded human cases of zoonotic orthopoxvirus infections force to renew consideration of the problem of possible smallpox reemergence resulting from natural evolution of these viruses. Analysis of the available archive data on smallpox epidemics, the history of ancient civilizations, and the newest data on the evolutionary relationship of orthopoxviruses has allowed us to hypothesize that VARV could have repeatedly reemerged via evolutionary changes in a zoonotic ancestor virus and then disappeared because of insufficient population size of isolated ancient civilizations. Only the historically last smallpox pandemic continued for a long time and was contained and stopped in the 20th century thanks to the joint efforts of medics and scientists from many countries under the aegis of WHO. Thus, there is no fundamental prohibition on potential reemergence of smallpox or a similar human disease in future in the course of natural evolution of the currently existing zoonotic orthopoxviruses. Correspondingly, it is of the utmost importance to develop and widely adopt state-of-the-art methods for efficient and rapid species-specific diagnosis of all orthopoxvirus species pathogenic for humans, VARV included. It is also most important to develop new safe methods for prevention and therapy of human orthopoxvirus infections.

About the authors

S. N. Shchelkunov

State Research Center of Virology and Biotechnology VECTOR

Author for correspondence.
Email: snshchel@vector.nsc.ru
ORCID iD: 0000-0002-6255-9745
Sergei N. Shchelkunov, Sc.D., professor, chief researcher of the department of genomic research, Koltsovo, Novosibirsk region, 630559, Russia Russian Federation

G. A. Shchelkunova

State Research Center of Virology and Biotechnology VECTOR

Email: fake@neicon.ru
ORCID iD: 0000-0003-0708-7826
Koltsovo, Novosibirsk region, 630559, Russia Russian Federation


  1. Fenner F., Henderson D.A., Arita I., Jezek Z., Ladnyi I.D. Smallpox and Its Eradication. Geneva: World Health Organization; 1988.
  2. Shchelkunov S.N., Marennikova S.S., Moyer R.W. Orthopoxviruses Pathogenic for Humans. New York: Springer; 2005.
  3. Report of the Fourth Meeting of the Committee on Orthopoxvirus Infections (SE/86.163). Geneva; 1986.
  4. Report of the Ad Hoc Committee on Orthopoxvirus Infections (CDS/SME/91.1). Geneva; 1990.
  5. Shchelkunov S.N., Resenchuk S.M., Totmenin A.V., Blinov V.M., Marennikova S.S., Sandakhchiev L.S. Comparison of the genetic maps of variola and vaccinia viruses. FEBS Lett. 1993; 327(3): 321-4. Doi: https://doi.org/10.1016/0014-5793(93)81013-p
  6. Shchelkunov S.N., Blinov V.M., Totmenin A.V., Chizhikov V.E., Olenina L.V., Gutorov V.V., et al. Sequencing of the variola virus genome. In: Mahy B.W.J., Lvov D.K., eds. Concepts in Virology: From Ivanovsky to the Present. Chur, Switzerland: Harwood Academic Publishers; 1993: 93-105.
  7. Shchelkunov S.N., Massung R.F., Esposito J.J. Comparison of the genome DNA sequences of Bangladesh-1975 and India-1967 variola viruses. Virus Res. 1995; 36(1): 107-18. Doi: https://doi.org/10.1016/0168-1702(94)00113-q
  8. Shchelkunov S.N., Totmenin A.V., Loparev V.N., Safronov P.F., Gutorov V.V., Chizhikov V.E., et al. Alastrim smallpox variola minor virus genome DNA sequences. Virology. 2000; 266(2): 361-86. Doi: https://doi.org/10.1006/viro.1999.0086
  9. Report of the Meeting of the Ad Hoc Committee on Orthopoxvirus Infections (WHO/CDS/BVI/94.3). Geneva; 1994.
  10. WHO Advisory Committee on Variola Virus Research. Report of the Sixteenth Meeting (WHO/HSE/PED/CED/2015.2). Geneva; 2014.
  11. Noyce R.S., Lederman S., Evans D.H. Construction of an infectious horsepox virus vaccine from chemically synthesized DNA fragments. PLoS One. 2018; 13(1): e0188453. Doi: https://doi.org/10.1371/journal.pone.0188453
  12. Albarnaz J.D., Torres A.A., Smith G.L. Modulating vaccinia virus immunomodulators to improve immunological memory. Viruses. 2018; 10(3): 101. Doi: https://doi.org/10.3390/v10030101
  13. Baxby D., Hanna W. Studies in smallpox and vaccination. 1913. Rev. Med. Virol. 2002; 12(4): 201-9. Doi: https://doi.org/10.1002/rmv.361
  14. Ladnyj I.D., Ziegler P., Kima E.A. A human infection caused by monkeypox virus in Basankusu territory, Democratic Republic of the Congo. Bull. World Health Organ. 1972; 46(5): 593-7.
  15. Ježek Z., Fenner F. Human monkeypox. In: Monographs in Virology. Volume 17. Basel, Switzerland: Karger; 1988: 1-140.
  16. Likos A.M., Sammons S.A., Olson V.A., Frace A.M., Li Y., Olsen-Rasmussen M., et al. A tale of two clades: monkeypox viruses. J. Gen. Virol. 2005; 86(Pt. 10): 2661-72. Doi: https://doi.org/10.1099/vir.0.81215-0
  17. Hutson C.L., Carroll D.S., Gallardo-Romero N., Drew C., Zaki S.R., Nagy T., et al. Comparison of monkeypox virus clade kinetics and pathology within the prairie dog animal model using a serial sacrifice study design. Biomed Res. Int. 2015; 2015: 965710. Doi: https://doi.org/10.1155/2015/965710
  18. Reed K.D., Melski J.W., Graham M.B., Regnery R.L., Sotir M.J., Wegner M.V., et al. The detection of monkeypox in humans in the Western Hemisphere. N. Engl. J. Med. 2004; 350(4): 342-50. Doi: https://doi.org/10.1056/NEJMoa032299
  19. Kabuga A.I., El Zowalaty M.E. A review of the monkeypox virus and a recent outbreak of skin rash disease in Nigeria. J. Med. Virol. 2019; 91(4): 533-40. Doi: https://doi.org/10.1002/jmv.25348
  20. Rimoin A.W., Mulembakani P.M., Johnston S.C., Lloyd Smith J.O., Kisalu N.K., Kinkela T.L., et al. Major increase in human monkeypox incidence 30 years after smallpox vaccination campaigns cease in the Democratic Republic of Congo. Proc. Natl. Acad. Sci. USA. 2010; 107(37): 16262-7. Doi: https://doi.org/10.1073/pnas.1005769107
  21. Reynolds M.G., Doty J.B., McCollum A.M., Olson V.A., Nakazawa Y. Monkeypox re-emergence in Africa: a call to expand the concept and practice of One Health. Expert Rev. Anti. Infect. Ther. 2019; 17(2): 129-39. Doi: https://doi.org/10.1080/14787210.2019.1567330
  22. Erez N., Achdout H., Milrot E., Schwartz Y., Wiener-Well Y., Paran N., et al. Diagnosis of imported monkeypox, Israel, 2018. Emerg. Infect. Dis. 2019; 25(5): 980-3. Doi: https://doi.org/10.3201/eid2505.190076
  23. Fassbender P., Zange S., Ibrahim S., Zoeller G., Herbstreit F., Meyer H. Generalized cowpox virus infection in a patient with HIV, Germany, 2012. Emerg. Infect. Dis. 2016; 22(3): 553-5. Doi: https://doi.org/10.3201/eid2203.151158
  24. Popova A.Y., Maksyutov R.A., Taranov O.S., Tregubchak T.V., Zaikovskaya A.V., Sergeev A.A., et al. Cowpox in a human, Russia, 2015. Epidemiol. Infect. 2017; 145(4): 755-9. Doi: https://doi.org/10.1017/S0950268816002922
  25. Venkatesan G., Balamurugan V., Prabhu M., Yogisharadhya R., Bora D.P., Gandhale P.N., et al. Emerging and re-emerging zoonotic buffalopox infection: a severe outbreak in Kolhapur (Maharashtra), India. Vet. Ital. 2010; 46(4): 439-48.
  26. Peres M.G., Bacchiega T.S., Appolinario C.M., Vicente A.F., Mioni M.S.R., Ribeiro B.L.D., et al. Vaccinia virus in blood samples of humans, domestic and wild mammals in Brazil. Viruses. 2018; 10(1): E42. Doi: https://doi.org/10.3390/v10010042
  27. Downie A.W. The immunological relationship of the virus of spontaneous cowpox to vaccinia virus. Br. J. Exp. Pathol. 1939; 20(2): 158-76.
  28. Baxby D. The origins of vaccinia virus. J. Infect. Dis. 1977; 136(3): 453-5. Doi: https://doi.org/10.1093/infdis/136.3.453
  29. Damaso C.R., Esposito J.J., Condit R.C., Moussatché N. An emergent poxvirus from humans and cattle in Rio de Janeiro State: Cantagalo virus may derive from Brazilian smallpox vaccine. Virology. 2000; 277(2): 439-49. Doi: https://doi.org/10.1006/viro.2000.0603
  30. Tulman E.R., Delhon G., Afonso C.L., Lu Z., Zsak L., Sandybaev N.T., et al. Genome of horsepox virus. J. Virol. 2006; 80(18): 9244-58. Doi: https://doi.org/10.1128/JVI.00945-06
  31. Shchelkunov S.N. An increasing danger of zoonotic orthopoxvirus infections. PLoS Pathog. 2013; 9(12): e1003756. Doi: https://doi.org/10.1371/journal.ppat.1003756
  32. Schrick L., Tausch S.H., Dabrowski P.W., Damaso C.R., Esparza J., Nitsche A. An early american smallpox vaccine based on horse pox. N. Engl. J. Med. 2017; 377(15): 1491-2. Doi: https://doi.org/10.1056/NEJMc1707600
  33. Carroll D.S., Emerson G.L., Li Y., Sammons S., Olson V., Frace M., et al. Chasing Jenner’s vaccine: revisiting cowpox virus classification. PLoS One. 2011; 6(8): e23086. Doi: https://doi.org/10.1371/journal.pone.0023086
  34. Gubser C., Smith G.L. The sequence of camelpox virus shows it is most closely related to variola virus, the cause of smallpox. J. Gen. Virol. 2002; 83(Pt. 4): 855-72. Doi: https://doi.org/10.1099/0022-1317-83-4-855
  35. Khalafalla A.I., Abdelazim F. Human and dromedary camel infection with camelpox virus in Eastern Sudan. Vector Borne Zoonotic Dis. 2017; 17(4): 281-4. Doi: https://doi.org/10.1089/vbz.2016.2070
  36. Shchelkunov S.N., Safronov P.F., Totmenin A.V., Petrov N.A., Ryazankina O.I., Gutorov V.V., et al. The genomic sequence analysis of the left and right species-specific terminal region of a cowpox virus strain reveals unique sequences and a cluster of intact ORFs for immunomodulatory and host range proteins. Virology. 1998; 243(2): 432-60. Doi: https://doi.org/10.1006/viro.1998.9039
  37. Shchelkunov S.N., Totmenin A.V., Babkin I.V., Safronov P.F., Ryazankina O.I., Petrov N.A., et al. Human monkeypox and smallpox viruses: genomic comparison. FEBS Lett. 2001; 509(1): 66-70. Doi: https://doi.org/10.1016/s0014-5793(01)03144-1
  38. Shchelkunov S.N. Orthopoxvirus genes that mediate disease virulence and host tropism. Adv. Virol. 2012; 2012: 524743. Doi: https://doi.org/10.1155/2012/524743
  39. Babkina I.N., Babkin I.V., Le U., Ropp S., Kline R., Damon I., et al. Phylogenetic comparison of the genomes of different strains of variola virus. Dokl. Biochem. Biophys. 2004; 398: 316-9.
  40. Babkin I.V., Shchelkunov S.N. The time scale in poxvirus evolution. Mol. Biol. 2006; 40(1): 16-9.
  41. Shchelkunov S.N. How long ago did smallpox virus emerge? Arch. Virol. 2009; 154(12): 1865-71. Doi: https://doi.org/10.1007/s00705-009-0536-0
  42. Shchelkunov S.N. Emergence and reemergence of smallpox: the need in development of a new generation smallpox vaccine. Vaccine. 2011; 29(Suppl. 4): D49-53. Doi: https://doi.org/10.1016/j.vaccine.2011.05.037
  43. Shchelkunov S.N., Gavrilova E.V., Babkin I.V. Multiplex PCR detection and species differentiation of orthopoxviruses pathogenic to humans. Mol. Cell. Probes. 2005; 19(1): 1-8. Doi: https://doi.org/10.1016/j.mcp.2004.07.004
  44. Shchelkunov S.N., Shcherbakov D.N., Maksyutov R.A., Gavrilova E.V. Species-specific identification of variola, monkeypox, cowpox, and vaccinia viruses by multiplex real-time PCR assay. J. Virol. Methods. 2011; 175(2): 163-9. Doi: https://doi.org/10.1016/j.jviromet.2011.05.002
  45. Lapa S., Mikheev M., Shchelkunov S., Mikhailovich V., Sobolev A., Blinov V., et al. Species-level identification of orthopoxviruses with an oligonucleotide microchip. J. Clin. Microbiol. 2002; 40(3): 753-7. Doi: https://doi.org/10.1128/jcm.40.3.753-757.2002
  46. Ryabinin V.A., Shundrin L.A., Kostina E.B., Laassri M., Chizhikov V., Shchelkunov S.N., et al. Microarray assay for detection and discrimination of Orthopoxvirus species. J. Med. Virol. 2006; 78(10): 1325-40. Doi: https://doi.org/10.1002/jmv.20698
  47. Sánchez-Sampedro L., Perdiguero B., Mejías-Pérez E., Garcia-Arriaza J., Di Pilato M., Esteban M. The evolution of poxvirus vaccines. Viruses. 2015; 7(4): 1726-803. Doi: https://doi.org/10.3390/v7041726
  48. Volz A., Sutter G. Modified vaccinia virus Ankara: History, value in basic research, and current perspectives for vaccine development. Adv. Virus Res. 2017; 97: 187-243. Doi: https://doi.org/10.1016/bs.aivir.2016.07.001
  49. Overton E.T., Stapleton J., Frank I., Hassler S., Goepfert P.A., Barker D., et al. Safety and immunogenicity of Modified Vaccinia Ankara- Bavarian Nordic smallpox vaccine in vaccinia-naive and experienced human immunodeficiency virus-infected individuals: An Open-label, controlled clinical phase II trial. Open Forum Infect. Dis. 2015; 2(2): ofv040. Doi: https://doi.org/10.1093/ofid/ofv040
  50. Eto A., Saito T., Yokote H., Kurane I., Kanatani Y. Recent advances in the study of live attenuated cell-cultured smallpox vaccine LC16m8. Vaccine. 2015; 33(45): 6106-11. Doi: https://doi.org/10.1016/j.vaccine.2015.07.111
  51. Midgley C.M., Putz M.M., Weber J.N., Smith G.L. Vaccinia virus strain NYVAC induces substantially lower and qualitatively different human antibody responses compared with strains Lister and Dryvax. J. Gen. Virol. 2008; 89(Pt. 12): 2992-7. Doi: https://doi.org/10.1099/vir.0.2008/004440-0
  52. Yakubitskyi S.N., Kolosova I.V., Maksyutov R.A., Shchelkunov S.N. Highly immunogenic variant of attenuated vaccinia virus. Dokl. Biochem. Biophys. 2016; 466: 35-8. Doi: https://doi.org/10.1134/S1607672916010105
  53. Maksyutov R.A., Gavrilova E.V., Kochneva G.V., Shchelkunov S.N. Immunogenicity and protective efficacy of a polyvalent DNA vaccine against human orthopoxvirus infections based on smallpox virus genes. J. Vaccines. 2013; 2013: 618324.
  54. Maksyutov R.A., Yakubitskyi S.N., Kolosova I.V., Shchelkunov S.N. Comparing new-generation candidate vaccines against human orthopoxvirus infections. Acta Naturae. 2017; 9(2): 88-93.
  55. Smee D.F. Progress in the discovery of compounds inhibiting orthopoxviruses in animal models. Antivir. Chem. Chemother. 2008; 19(3): 115-24. Doi: https://doi.org/10.1177/095632020801900302
  56. Olson V.A., Shchelkunov S.N. Are we prepared in case of a possible smallpox-like disease emergence? Viruses. 2017; 9(9): 242. Doi: https://doi.org/10.3390/v9090242
  57. Zaitseva M., McCullough K.T., Cruz S., Thomas A., Diaz C.G., Keilholz L., et al. Postchallenge administration of brincidofovir protects healthy and immune-deficient mice reconstituted with limited numbers of T cells from lethal challenge with IHD-J-Luc vaccinia virus. J. Virol. 2015; 89(6): 3295-307. Doi: https://doi.org/10.1128/JVI.03340-14
  58. Smith S.K., Self J., Weiss S., Carroll D., Braden Z., Regnery R.L., et al. Effective antiviral treatment of systemic orthopoxvirus disease: ST-246 treatment of prairie dogs infected with monkeypox virus. J. Virol. 2011; 85(17): 9176-87. Doi: https://doi.org/10.1128/JVI.02173-10
  59. Mucker E.M., Goff A.J., Shamblin J.D., Grosenbach D.W., Damon I.K., Mehal J.M., et al. Efficacy of tecovirimat (ST-246) in nonhuman primates infected with variola virus (smallpox). Antimicrob. Agents Chemother. 2013; 57(12): 6246-53. Doi: https://doi.org/10.1128/AAC.00977-13
  60. Mazurkov O.Y., Kabanov A.S., Shishkina L.N., Sergeev A.A., Skarnovich M.O., Bormotov N.I., et al. New effective chemically synthesized anti-smallpox compound NIOCH-14. J. Gen. Virol. 2016; 97(5): 1229-39. Doi: https://doi.org/10.1099/jgv.0.000422

Copyright (c) 2019 Shchelkunov S.N., Shchelkunova G.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС77-77676 от 29.01.2020.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies