ADJUVANTS OF INFLUENZA VACCINES: NEW POSSIBILITIES OF USING SULPHATED POLYSACCHARIDES FROM MARINE BROWN ALGAE
- Authors: Kuznetsova T.A.1, Persiyanova E.V.1,2, Zaporozhets T.S.1, Besednova N.N.1
-
Affiliations:
- Research Somov Institute of Epidemiology and Microbiology
- Medical Association of Far East Branch of the Russian Academy of Sciences
- Issue: Vol 64, No 1 (2019)
- Pages: 5-11
- Section: REVIEWS
- Submitted: 20.01.2020
- Published: 20.02.2019
- URL: https://virusjour.crie.ru/jour/article/view/227
- DOI: https://doi.org/10.18821/0507-4088-2019-64-1-5-11
- ID: 227
Cite item
Full Text
Abstract
The review article presents the characteristics of the main adjuvant groups (mineral salts of aluminum, synthetic squalene-based adjuvants - MF59 and AS03, CpG-oligodeoxynucleotides, virosomes, polyoxidonium, sovidone) included in the licensed influenza vaccine. The main mechanisms of adjuvant action, advantages and disadvantages of these adjuvants are shown. The vaccines adjuvants in the phase of experimental studies and clinical trials (ISCOMs, Advax™, chitosan) are described too. Particular attention is paid to sulfated polysaccharides (fucoidans) from marine brown algae as vaccine adjuvants. Numerous results of their application in compositions of experimental vaccines are presented. The prospects of sulfated polysaccharides using in the design of influenza vaccines are estimated. These prospects are determined by high biocompatibility, low toxicity and good tolerance of the human body to fucoidans, as well as mechanisms of their adjuvant activity. Sulfated polysaccharides are agonists of toll-like receptors of innate immunity cells and powerful inducers of the cellular and humoral immune response, which is important for the development of influenza vaccines. The review is based on the information presented in the bibliographic and abstract databases of scientific publications, search engines and publishers: RSCI, Web of Science, Scopus, MEDLINE, Google Scholar, PubMed, Springer Nature, Elsevier and others.
Keywords
About the authors
T. A. Kuznetsova
Research Somov Institute of Epidemiology and Microbiology
Author for correspondence.
Email: noemail@neicon.ru
Russian Federation
E. V. Persiyanova
Research Somov Institute of Epidemiology and Microbiology; Medical Association of Far East Branch of the Russian Academy of Sciences
Email: helen-pers@yandex.ru
Russian Federation
T. S. Zaporozhets
Research Somov Institute of Epidemiology and Microbiology
Email: noemail@neicon.ru
Russian Federation
N. N. Besednova
Research Somov Institute of Epidemiology and Microbiology
Email: noemail@neicon.ru
Russian Federation
References
- Гендон Ю.З., Васильев Ю.М. Проблемы профилактики гриппа с помощью вакцин. Журнал микробиологии, эпидемиологии и иммунобиологии. 2011; (4): 116-24.
- Гендон Ю.З. Проблемы профилактики гриппа у беременных женщин и новорожденных детей. Вопросы вирусологии. 2009; 54(4): 4-10.
- Васильев Ю.М. Направления совершенствования вакцин против гриппа. Врач. 2014; (8): 12-4.
- Цыбалова Л.М., Киселев О.И. Универсальные вакцины против гриппа. Разработки, перспективы использования. Вопросы вирусологии. 2012; 57(1): 9-14.
- Киселев О.И. Прогресс в создании пандемических противогриппозных вакцин и технологии их производства. Биотехнология. 2010; (2): 8-24.
- Atmar R.L, Keitel W.A. Adjuvants for pandemic influenza vaccines. Curr. Top. Microbiol. Immunol. 2009; 333: 323-44. doi: 10.1007/978-3-540-92165-3_16
- Glenny A.T., Buttle G.A.H., Stevens M.F. Rate of disappearance of diphtheria toxoid injected into rabbits and guinea pigs: toxoid precipitated with Alum. J. Pathol. Bacteriol. 1931; 34(2): 267-75. doi: 10.1002/path.1700340214
- Ghimire T.R. The mechanisms of action of vaccines containing aluminum adjuvants: an in vitro vs in vivo paradigm. SpringerPlus. 2015; 4: 181. doi: 10.1186/s40064-015-0972-0
- Lukiw W.J., Bazan N.G. Neuroinflammatory signaling upregulation in Alzheimer’s disease. Neurochem. Res. 2000; 25(9-10): 1173-84.
- Cohly H.H., Panja A. Immunological findings in autism. Int. Rev. Neurobiol. 2005; 71: 317-41.
- Exley C., Mamutse G., Korchazhkina O., Pye E., Strekopytov S., Polwart A., et al. Elevated urinary excretion of aluminium and iron in multiple sclerosis. Mult. Scler. 2006; 12(5): 533-40. doi: 10.1177/1352458506071323
- Vargas D.L., Nascimbene C., Krishnan C., Zimmerman A.W., Pardo C.A. Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann. Neurol. 2005; 57(1): 67-81. doi: 10.1002/ana.20315
- Vera-Lastra O., Medina G., del Cruz-Dominguez M.P., Jara L.J., Shoenfeld Y. Autoimmune/inflammatory syndrome induced by adjuvants (Shoenfeld’s syndrome): clinical and immunological spectrum. Expert Rev. Clin. Immunol. 2013; 9(4): 361-73. doi: 10.1586/eci.13.2
- O’Hagan D.T., Ott G.S., De Gregorio E., Seubert A. The mechanism of action of MF59 - an innately attractive adjuvant formulation. Vaccine. 2012; 30(29): 4341-8. doi: 10.1016/j.vaccine.2011.09.061
- Roman F., Vaman T., Kafeja F., Hanon E., Van Damme P. AS03(A) - adjuvanted influenza A (H1N1) 2009 vaccine for adults up to 85 years of age. Clin. Infect. Dis. 2010; 51(6): 668-77. doi: 10.1086/655830
- Wack A., Baudner B., Hilbert A., Manini I., Nuti S., Tavarini S., et al. Combination adjuvants for the induction of potent, long-lasting antibody and T-cell responses to influenza vaccine in mice. Vaccine. 2008; 26(4): 552-61. doi: 10.1016/j.vaccine.2007.11.054
- Yin J., Khandaker G., Rashid H., Heron L., Ridda I., Booy R. Immunogenicity and safety of pandemic influenza A(H1N1) 2009 vaccine: systematic review and meta-analysis. Influenza Other Respir. Viruses. 2011; 5(5): 299-305. doi: 10.1111/j.1750-2659.2011.00229.x
- Hwang S.M., Kim H.L., Min K.W., Kim M., Lim J.S., Choi J.M., et al. Comparison of the adverse events associated with MF59-adjuvanted and non-adjuvanted H1N1 vaccines in healthy young male Korean soldiers. Jpn. J. Infect. Dis. 2012; 65(3): 193-7.
- Beyer W., Nauta J., Palache A., Giezeman K., Osterhaus A. Immunogenicity and safety of inactivated influenza vaccines in primed populations: a systematic literature review and metaanalysis. Vaccine. 2011; 29(34): 5785-92. doi: 10.1016/j.vaccine.2011.05.040
- Cooper C.L., Davis H.L., Morris M.L., Efler S.M., Krieg A.M., Li Y., et al. Safety and immunogenicity of CPG 7909 injection as an adjuvant to Fluarix influenza vaccine. Vaccine. 2004; 22(23-24): 3136-43. doi: 10.1016/j.vaccine.2004.01.058
- Iho S., Maeyama J., Suzuki F. CpG oligodeoxynucleotides as mucosal adjuvants. Hum. Vaccin. Immunother. 2015; 11(3): 755-60. doi: 10.1080/21645515.2014.1004033
- Gursel M., Gursel I. Development of CpG ODN based vaccine adjuvant formulations. Methods Mol. Biol. 2016; 1404: 289-98. doi: 10.1007/978-1-4939-3389-1_20
- Kawai T., Akira S. The role of pattern-recognition receptors in innate immunity: update on toll-like receptors. Nat. Immunol. 2010; 11(5): 373-84. doi: 10.1038/ni.1863
- Tanegashima K., Takahashi R., Nuriya H., Iwase R., Naruse N., Tsuji K., et al. CXCL14 acts as a specific carrier of CpG DNA into dendritic cells and activates Toll-like receptor 9-mediated adaptive immunity. EBioMedicine. 2017; 24: 247-56. doi: 10.1016/j.ebiom.2017.09.012
- Bauer M., Redecke V., Ellwart J.W., Scherer B., Kremer J.P., Wagner H., et al. Bacterial CpG DNA triggers activation and maturation of human CD11c(-), CD123(+) dendritic cells. J. Immunol. 2001; 166(8): 5000-7. doi: 10.4049/jimmunol.166.8.5000
- Fu J., Liang J., Kang H., Lin J., Yu Q., Yang Q. Effects of different CpG oligodeoxynucleotides with inactivated avian H5N1 influenza virus on mucosal immunity of chickens. Poult. Sci. 2013; 92(11): 2866-75. doi: 10.3382/ps.2013-03205
- Hanagata N. CpG oligodeoxynucleotide nanomedicines for the prophylaxis or treatment of cancers, infectious diseases, and allergies. Int. J. Nanomedicine. 2017; 12: 515-31. doi: 10.2147/IJN.S114477
- Schwendener R.A. Liposomes as vaccine delivery systems: a review of the recent advances. Ther. Adv. Vaccines. 2014; 2(6): 159-82. doi: 10.1177/2051013614541440
- Moser C., Muller M., Kaeser M.D., Weydemann U., Amacker M. Influenza virosomes as vaccine adjuvant and carrier system. Expert Rev. Vaccines. 2013; 12(7): 779-91. doi: 10.1586/14760584.2013.811195
- Gasparini R., Amicizia D., Lai P.L., Rossi S., Panatto D. Effectiveness of adjuvanted seasonal influenza vaccines (Inflexal® V and Fluad®) in preventing hospitalization for influenza and pneumonia in the elderly: a matched case-control study. Hum. Vaccin. Immunother. 2013; 9(1): 144-52. doi: 10.4161/hv.22231
- Herzog C., Hartmann K., Künzi V., Kürsteiner O., Mischler R., LazarH., et al. Eleven years of Inflexal® V - a virosomal adjuvanted influenza vaccine. Vaccine. 2009; 27(33): 4381-7. doi: 10.1016/j.vaccine.2009.05.029
- Селькова Е.П., Гренкова Т.А., Алешкин В.А., Гудова Н.В., Лыткина И.Н., Михайлова Е.В. и др. Изучение иммуногенности, эффективности и переносимости отечественной вакцины «Ультрикс®» среди лиц повышенного риска инфицирования и заболеваемости гриппом и острыми респираторными вирусными инфекциями. Эпидемиология и инфекционные болезни. Актуальные вопросы. 2016; (1): 59-66.
- Петров Р.В., Хаитов Р.М. Иммуногены и вакцины нового поколения. M.: ГЭОТАР-Медиа; 2011.
- Романенко В.В., Осипова И.В., Лиознов Д.А., Марцевич С.Ю., Анкудинова А.В., Чебыкина Т.В. Результаты клинического исследования по оценке безопасности и эффективности полимер-субъединичной адъювантной гриппозной вакцины при сочетанном применении иммуномодулятора у лиц 60 лет и старше. Эпидемиология и вакцинопрофилактика. 2016; 15(5): 63-71.
- Киселев О.И., Дюков М.И. Иммунологический адъювант на основе наночастиц для вакцин против высокопатогенных штаммов вируса гриппа. Патент РФ № 2529959; 2014.
- Никифорова А.Н., Исакова-Сивак И.Н., Ерофеева М.К., Фельдблюм И.В., Руденко Л.Г. Результаты изучения безопасности и иммуногенности отечественной субъединичной адъювантной вакцины Совигрипп у добровольцев 18-60 лет. Эпидемиология и вакцинопрофилактика. 2014; (2): 72-8.
- Lövgren-Bengtsson K., Morein B., Osterhaus A.D. ISCOM technology-based Matrix M™ adjuvant: success in future vaccines relies on formulation. Expert. Rev. Vaccines. 2011; 10(4): 401-3. doi: 10.1586/erv.11.25
- Sun H.X., Xie Y., Ye Y.P. ISCOMs and ISCOMATRIX. Vaccine. 2009; 27(33): 4388-401. doi: 10.1016/j.vaccine.2009.05.032
- Красильников И.В., Ленева И.А., Михайлова Н.А., Доронин А.Н., Бражкин А.С. Иммунобиологические свойства экспериментальных инактивированных гриппозных вакцин, содержащих корпускулярные адъюванты. Медицинский алфавит. 2016; 2(16): 30-5
- Cox R.J., Pedersen G., Madhun A.S., Svindland S., Saevik M., Breakwell L., et al. Evaluation of a virosomal H5N1 vaccine formulated with Matrix M™ adjuvant in a phase I clinical trial. Vaccine. 2011; 29(45): 8049-59. doi: 10.1016/j.vaccine.2011.08.042
- Семакова А.П., Микшис Н.И. Адъювантные технологии в создании современных вакцин. Проблемы особо опасных инфекций. 2016; (2): 28-35. doi: 10.21055/0370-1069-2016-2-28-35
- Petrovsky N., Cooper P.D. Carbohydrate-based immune adjuvants. Expert Rev. Vaccines. 2011; 10(4): 523-37. doi: 10.1586/erv.11.30
- Petrovsky N., Cooper P. Advax™, a novel microcrystalline polysaccharide particle engineered from delta inulin, provides robust adjuvant potency together with tolerability and safety. Vaccine. 2015; 33(44): 5920-6. doi: 10.1016/j.vaccine.2015.09.030
- Silva D., Cooper P.D., Petrovsky N. Inulin-derived adjuvants efficiently promote both Th1 and Th2 immuneresponses. Immunol. Cell Biol. 2004; 82(6), 611-6. doi: 10.1111/j.1440-1711.2004.01290.x
- Gordon D., Kelley P., Heinzel S., Cooper P., Petrovsky N. Immunogenicity and safety of Advax™, a novel polysaccharide adjuvant based on delta inulin, when formulated with hepatitis B surface antigen; a randomized controlled Phase I study. Vaccine. 2014; 32(48), 6469-77. doi: 10.1016/j.vaccine.2014.09.034
- Khalili I., Ghadimipour S., Sadigh Eteghad S., Fathi Najafi M., Ebrahimi M.M., Godsian N., et al. Evaluation of immune response against inactivated avian influenza (H9N2) vaccine, by using chitosan nanoparticles. Jundishapur J. Microbiol. 2015; 8(12): e27035. doi: 10.5812/jjm.27035
- Spinner J., Oberoi H., Yorgensen Y., Poirier D.S., Burkhart D.J., Plante M., et al. Methylglycol chitosan and a synthetic TLR4 agonist enhance immune responses to influenza vaccine administered sublingually. Vaccine. 2015; 33(43): 5845-53. doi: 10.1016/j.vaccine.2015.08.086
- Гендон Ю.З., Маркушин С.Г., Васильев Ю.М., Акопова И.И., Кривцов Г.Г. Повышение иммуногенности инактивированной вакцины из штамма вируса гриппа А/Калифорния/7/09 (H1N1) при использовании в качестве адъюванта хитозана и анализ антигенной специфичности этого штамма вируса гриппа. Вопросы вирусологии. 2012; 57(1): 28-33
- Chang H., Li X., Teng Y., Liang Y., Peng B., Fang F., et al. Comparison of adjuvant efficacy of chitosan and aluminum hydroxide for intraperitoneally administered inactivated influenza H5N1 vaccine. DNA Cell Biol. 2010; 29(9): 563-8. doi: 10.1089/dna.2009.0977
- Макаренкова И.Д., Логунов Д.Ю., Тухватулин А.И., Семенова И.Б., Звягинцева Т.Н., Горбач В.И. и др. Сульфатированные полисахариды бурых водорослей - лиганды толл-подобных рецепторов. Биомедицинская химия. 2012; 58(3): 318-25. doi: 10.18097/pbmc20125803318
- Coffman R.L., Sher A., Seder R.A. Vaccine adjuvants: putting innate immunity to work. Immunity. 2010; 33(4): 492-503. doi: 10.1016/j.immuni.2010.10.002
- Reed S.G., Orr M.T., Fox C.B. Key roles of adjuvants in modern vaccines. Nat. Med. 2013; 19: 1597-608. doi: 10.1038/nm.3409
- Lin C.C., Pan I.H., Li Y.R., Pan Y.G., Lin M.K., Lu Y.H., et al. The adjuvant effects of high-molecule-weight polysaccharides purified from Antrodia cinnamomea on dendritic cell function and DNA vaccines. PLoS One. 2015; 10(2): e0116191. doi: 10.1371/journal.pone.0116191
- Zhang W., Oda T., Yu Q., Jin J.O. Fucoidan from Macrocystis pyrifera has powerful immune-modulatory effects compared to three other fucoidans. Mar. Drugs. 2015; 13(3): 1084-104. doi: 10.3390/md13031084
- Jin J.O., Zhang W., Du J.Y., Wong K.W., Oda T., Yu Q. Fucoidan can function as an adjuvant in vivo to enhance dendritic cell maturation and function and promote antigen-specific T cell immune responses. PLoS One. 2014; 9(6): e99396. doi: 10.1371/journal.pone.0099396
- Hayashi K., Lee J.B., Nakano T., Hayashi T. Anti-influenza A virus characteristics of a fucoidan from sporophyll of Undaria pinnatifida in mice with normal and compromised immunity. Microbes Infect. 2013; 15(4): 302-9. doi: 10.1016/j.micinf.2012.12.004
- Synytsya A., Bleha R., Synytsya A., Pohl R., Hayashi K., Yoshinaga K., et al. Mekabu fucoidan: structural complexity and defensive effects against avian influenza A viruses. Carbohydr. Polym. 2014; 111: 633-44. doi: 10.1016/j.carbpol.2014.05.032
- Song L., Chen X., Liu X., Zhang F., Hu L., Yue Y., et al. Characterization and comparison of the structural features, immune-modulatory and anti-avian influenza virus activities conferred by three algal sulfated polysaccharides. Mar. Drugs. 2016; 14(1): 4. doi: 10.3390/md14010004
- Кузнецова Т.А., Степанова Л.А., Ермакова С.П. Повышение иммуногенности инактивированного вируса гриппа А/калифорния/7/09 (H1N1) при использовании в качестве адъюванта фукоидана из бурой водоросли Fucus evanescens. Здоровье. Медицинская экология. Наука. 2017; (3): 57-9
- Negishi H., Mori M., Mori H., Yamori Y. Supplementation of elderly Japanese men and women with fucoidan from seaweed increases immune responses to seasonal influenza vaccination. J. Nutr. 2013; 143(11): 1794-8. doi: 10.3945/jn.113.179036
- Chen L.M., Liu P.Y., Chen Y.A., Tseng H.Y., Shen P.C., Hwang P.A., et al. Oligo-Fucoidan prevents IL-6 and CCL2 production and cooperates with p53 to suppress ATM signaling and tumor progression. Sci. Rep. 2017; 7(1): 11864. doi: 10.1038/s41598-017-12111-1
- Кузнецова Т.А., Иванушко Л.А., Персиянова Е.В., Шутикова А.Л., Ермакова С.П., Хотимченко М.Ю. и др. Оценка адъювантных эффектов фукоидана из бурой водоросли Fucus evanescens и его структурных аналогов для усиления эффективности вакцин. Биомедицинская химия. 2017; 63(6): 553-8. doi: 10.18097/PBMC20176306553
- Oyewumi M.O., Kumar A., Cui Z. Nano-microparticles as immune adjuvants: correlating particle sizes and the resultant immune responses. Expert Rev. Vaccines. 2010; 9(9): 1095-107. doi: 10.1586/erv.10.89