Analysis of the whole-genome sequence of an ASF virus (Asfarviridae: Asfivirus: African swine fever virus) isolated from a wild boar (Sus scrofa) at the border between Russian Federation and Mongolia
- Authors: Mazloum A.1, Igolkin A.S.1, Shotin A.R.1, Zinyakov N.G.1, Vlasova N.N.1, Aronova E.V.1, Puzankova O.S.1, Gavrilova V.L.1, Shevchenko I.V.1
-
Affiliations:
- FGBI «Federal Centre for Animal Health» («ARRIAH»)
- Issue: Vol 67, No 2 (2022)
- Pages: 153-164
- Section: ORIGINAL RESEARCH
- Submitted: 05.05.2022
- Accepted: 05.05.2022
- Published: 05.05.2022
- URL: https://virusjour.crie.ru/jour/article/view/613
- DOI: https://doi.org/10.36233/0507-4088-104
- ID: 613
Cite item
Abstract
Introduction. The causative agent of African swine fever (Asfarviridae: Asfivirus: African swine fever virus) (ASF) is a double-stranded DNA virus of 175–215 nm. To date, 24 of its genotypes are known. Clustering of ASF genotype II isolates is carried out by examining a limited number of selected genome markers. Despite the relatively high rate of mutations in the genome of this infectious agent compared to other DNA viruses, the number of known genome molecular markers for genotype II isolates is still insufficient for detailed subclustering. The aims of this work were the comparative analysis of ASFV/Zabaykali/WB-5314/2020 virus isolate and determination of additional molecular markers which can be used for clustering of viral genotype II sequences. Material and methods. ASF virus isolate ASFV/Zabaykali/WB-5314/2020 was used to extract genomic DNA (gDNA). Sequencing libraries were constructed using the Nextera XT DNA library prepare kit (Illumina, USA) using the methodology of the next generation sequencing (NGS). Results. The genome length was 189,380 bp, and the number of open reading frames (ORFs) was 189. In comparison with the genome of reference isolate Georgia 2007/1, 33 single nucleotide polymorphisms (SNPs) were identified, of which 13 were localized in the intergenic region, 10 resulted to the changes in the amino acid sequences of the encoded proteins, and 10 affected the ORF of ASF virus genes. Discussion. When analyzing intergenic regions, the ASFV/Zabaykali/WB-5314/2020 isolate is grouped separately from a number of isolates from Poland and three isolates from People’s Republic of China (PRC), since it does not harbor additional tandem repeat sequence (TRS). At the same time, the construction of a phylogenetic tree based on DP60R gene sequencing relates ASFV/Zabaykali/WB-5314/2020 to isolates from PRC and Poland. Moreover, phylogenetic analysis of full-genome sequences confirmed previous studies on the grouping of viruses of genotype II, and as for the studied isolate, it was grouped with the variants from China. Conclusion. A new variable region was identified, the DP60R gene, clustering for which gave a result similar to the analysis of full-length genomes. Probably, further study of the distribution of ASF virus isolates by groups based on the analysis of this gene sequences will reveal its significance for studying the evolution of the virus and its spread.
About the authors
A. Mazloum
FGBI «Federal Centre for Animal Health» («ARRIAH»)
Author for correspondence.
Email: ali.mazloum6@gmail.com
ORCID iD: 0000-0002-5982-8393
Ali Mazloum, Ph.D, Researcher, FGBI «ARRIAH» Federal State Budgetary Institution «Federal Center for Animal Health»
Vladimir region, Vladimir city, Yuryevets microdistrict, 600901
РоссияA. S. Igolkin
FGBI «Federal Centre for Animal Health» («ARRIAH»)
Email: igolkin_as@arriah.ru
ORCID iD: 0000-0002-5438-8026
A.S. Igolkin, Ph.D, Head of reference laboratory for ASF, FGBI «ARRIAH» Federal State Budgetary Institution «Federal Center for Animal Health»,
Vladimir region, Vladimir city, Yuryevets microdistrict, 600901
РоссияA. R. Shotin
FGBI «Federal Centre for Animal Health» («ARRIAH»)
Email: shotin@arriah.ru
ORCID iD: 0000-0001-9884-1841
A.R. Shotin, postgraduate student, leading veterinarian, FGBI «ARRIAH» Federal State Budgetary Institution «Federal Center for Animal Health»,
Vladimir region, Vladimir city, Yuryevets microdistrict, 600901
РоссияN. G. Zinyakov
FGBI «Federal Centre for Animal Health» («ARRIAH»)
Email: zinyakov@arriah.ru
ORCID iD: 0000-0002-3015-5594
N.G. Zinyakov, Ph.D, Senior Researcher, FGBI «ARRIAH» Federal State Budgetary Institution «Federal Center for Animal Health»,
Vladimir region, Vladimir city, Yuryevets microdistrict, 600901,
РоссияN. N. Vlasova
FGBI «Federal Centre for Animal Health» («ARRIAH»)
Email: vlasova_nn@arriah.ru
ORCID iD: 0000-0001-8707-7710
N.N. Vlasova, doctor of sciences, Leading Researcher, FGBI «ARRIAH» Federal State Budgetary Institution «Federal Center for Animal Health»,
Vladimir region, Vladimir city, Yuryevets microdistrict, 600901
РоссияE. V. Aronova
FGBI «Federal Centre for Animal Health» («ARRIAH»)
Email: aronova@arriah.ru
ORCID iD: 0000-0002-2072-6701
E.V. Aronova, Ph.D, Senior Researcher, FGBI «ARRIAH» Federal State Budgetary Institution «Federal Center for Animal Health»
Vladimir region, Vladimir city, Yuryevets microdistrict, 600901
РоссияO. S. Puzankova
FGBI «Federal Centre for Animal Health» («ARRIAH»)
Email: puzankova@arriah.ru
ORCID iD: 0000-0003-1584-3169
O.S. Puzankova, Ph.D, Senior Researcher, FGBI «ARRIAH» Federal State Budgetary Institution «Federal Center for Animal Health»,
Россия
V. L. Gavrilova
FGBI «Federal Centre for Animal Health» («ARRIAH»)
Email: gavrilova@arriah.ru
ORCID iD: 0000-0001-5843-2779
V.L. Gavrilova, Ph.D, Researcher, FGBI «ARRIAH» Federal State Budgetary Institution «Federal Center for Animal Health»
Vladimir region, Vladimir city, Yuryevets microdistrict, 600901
РоссияI. V. Shevchenko
FGBI «Federal Centre for Animal Health» («ARRIAH»)
Email: shevchenko@arriah.ru
ORCID iD: 0000-0001-6482-7814
I.V. Shevchenko, Ph.D, Senior Researcher, FGBI «ARRIAH» Federal State Budgetary Institution «Federal Center for Animal Health»
Vladimir region, Vladimir city, Yuryevets microdistrict, 600901
РоссияReferences
- Achenbach J.E., Gallardo C., Nieto-Pelegrin E., Rivera-Arroyo B., Degefa-Negi T., Arias M., et al. Identification of a new genotype of African swine fever virus in domestic pigs from Ethiopia. Transbound. Emerg. Dis. 2017; 64(5): 1393–404. https://doi.org/10.1111/tbed.12511
- OIE Terrestrial Manual. African swine fever virus (Infection with African swine fever virus); 2019. Available at: https://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/3.08.01_ASF.pdf (accessed January 14, 2021).
- Alkhamis M.A., Gallardo C., Jurado C., Soler A., Arias M., SánchezVizcaíno J.M. Phylodynamics and evolutionary epidemiology of African swine fever p72-CVR genes in Eurasia and Africa. PLoS One. 2018; 13(2): e0192565. https://doi.org/10.1371/journal.pone.0192565
- Bastos A.D.S., Penrith M.L., Crucière C., Edrich J.L., Hutchings G., Roger F., et al. Genotyping field strains of African swine fever virus by partial p72 gene characterization. Arch. Virol. 2003; 148(4): 693–706. https://doi.org/10.1007/s00705-002-0946-8
- Blasco R., Aguero M., Almendral J.M., Viñuela E. Variable and constant regions in African swine fever virus DNA. Virology. 1989; 168(2): 330–8. https://doi.org/10.1016/0042-6822(89)90273-0
- Blasco R., de la Vega I., Almazan F., Aguero M., Viñuela E. Genetic variation of African swine fever virus: Variable regions near the ends of the viral DNA. Virology. 1989; 173(1): 251–7. https://doi.org/10.1016/0042-6822(89)90241-9
- Mazloum A., van Schalkwyk A., Shotin A., Igolkin A., Shevchenko I., Gruzdev K.N., et al. Comparative analysis of full genome sequences of African swine fever virus isolates taken from wild boars in Russia in 2019. Pathogens. 2021; 10(5): 521. https://doi.org/10.3390/pathogens10050521
- Elsukova A., Shevchenko I.V., Varentsova A.A. Tandem repeat sequence in the intergenic region MGF 505 9R/10R is a new marker of the genetic variability among ASF Genotype II viruses. In: Proceedings of 10th Annual Meeting EPIZONE. Madrid; 2016: 78. Available at: https://www.epizone-eu.net/upload_mm/8/4/2/ b267aa36-5e28-4fed-aa9c-992209f9d3f7_Epizone10thAM_AbstractBookMeeting2016Madrid.pdf (accessed January 14, 2021).
- Gallardo C., Fernández-Pinero J., Pelayo V., Gazaev I., MarkowskaDaniel I., Pridotkas G., et al. Genetic variation among African swine fever genotype II viruses, Eastern and Central Europe. Emerg. Infect. Dis. 2014; 20(9): 1544–7. https://doi.org/10.3201/eid2009.140554
- Ge S., Li J., Fan X., Liu F., Li L., Wang Q., et al. Molecular characterization of African swine fever virus, China, 2018. Emerg. Infect. Dis. 2018; 24(11): 2131–3. https://doi.org/10.3201/eid2411.181274
- Greig A.S., Boulanger P., Bannister G.L. African swine fever. V. Cultivation of the virus in primary pig kidney cells. Can. J. Comp. Med. Vet. Sci. 1967; 31(1): 24–31.
- Kumar S., Stecher G., Li M., Knyaz C., Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 2018; 35(6): 1547–9. https://doi.org/10.1093/molbev/msy096
- Мазлум А., Шарипова Д.В., Гаврилова В.Л. Методические рекомендации по выделению и титрованию вируса африканской чумы свиней в культуре клеток селезёнки свиней. Владимир; 2019.
- Nei M., Kumar S. Molecular Evolution and Phylogenetics. New York: Oxford University Press; 2000.
- Ortín J., Enjuanes L., Viñuela E. Cross-links in African swine fever virus DNA. J. Virol. 1979; 31(3): 579–83. https://doi.org/10.1128/jvi.31.3.579-583.1979
- Portugal R., Coelho J., Höper D., Little N.S., Smithson C., Upton C., et al. Related strains of African swine fever virus with different virulence: genome comparison and analysis. J. Gen. Virol. 2015; 96(Pt. 2): 408–19. https://doi.org/10.1099/vir.0.070508-0
- Федеральная служба по ветеринарному и фитосанитарному надзору (Россельхознадзор). Эпизоотическая ситуация по АЧС в Российской Федерации в 2020 г. Available at: https://fsvps.gov.ru/fsvps-docs/ru/iac/asf/2020/12-31/01.pdf (accessed January 14, 2021).
- Wen X., He X., Zhang X., Zhang X., Liu L., Guan Y., et al. Genome sequences derived from pig and dried blood pig feed samples provide important insights into the transmission of African swine fever virus in China in 2018. Emerg. Microbes Infect. 2019; 8(1): 303–6. https://doi.org/10.1080/22221751.2019.1565915