Unification of the molecular epidemiological research of the tick-borne encephalitis

Cover Page


Cite item

Full Text

Abstract

Molecular genetic techniques and approaches in epidemiological studies were breakthrough in the understanding of the laws, ways, and mechanisms of the spread of the pathogens. However, lack of standard methods makes it difficult to compare results obtained by different scientific groups. In this work we propose to choose one fragment of the TBEV genome as a genetic marker whose sequencing would be both obligatory and sufficient for the molecular epidemiological studies. The best candidate for this purpose may be a fragment of the gene e of 454 nucleotides in length. The deduced amino acid sequence of this fragment was a basis for a new approach for the TBEV differentiation with clusteron being a structural unit (Kovalev and Mukhacheva, 2013). The clusteron approach was proved to be informative for studying the genetic structure of the TBEV-sib population in the Middle Urals. TBE foci were shown to be unique in both quantitative and qualitative composition of the clusterons. The greatest clusteron diversity in the south of the Middle Urals, through the Trans-siberian way, may reflect the history of the colonization, closely associated with the roads between siberia and the european part of Russia. The age of three clusterons did not exceed 50 years, which may indicate an ongoing evolutionary process taking place in the TBEV-sib populations. In turn, their spatial distribution indicates the crucial role of human factors in the spread of the TBEV (Kovalev & Mukhacheva, 2014). The clusteron approach provides formalization of ideas about the structure of the viral populations and could be used not only by researchers but also by epidemiological surveillance services. Unification of the studies of the TBEV on the basis of a standard genetic marker would consolidate the efforts of researchers from different regions of Russia and other countries.

About the authors

S. Y. Kovalev

Ural Federal University named after the first President of Russia B.N. Yeltsin

Author for correspondence.
Email: sergey.kovalev@urfu.ru
ORCID iD: 0000-0002-4669-5288

Sergei Y. Kovalev, Candidate of Biology, Associate Professor, Head of Laboratory of Molecular Genetics

Yekaterinburg, 620000

Россия

T. A. Mukhacheva

Ural Federal University named after the first President of Russia B.N. Yeltsin

Email: fake@neicon.ru
ORCID iD: 0000-0002-9300-5921
Yekaterinburg, 620000 Россия

References

  1. Schulte P.A., Perera F.P. Molecular Epidemiology: Principles and Practices. Orlando, FL: Academic Press. 1993.
  2. Mandl C.W., Kroschewski H., Allison S.L., Kofler R., Holzmann H., Meixner T.et al. Adaptation of tick-borne encephalitis virus to BHK21 cells results in the formation of multiple heparan sulfate binding sites in the envelope protein and attenuation in vivo. J. Virol. 2001; 75 (12): 5627–37.
  3. Romanova L., Gmyl A.P., Dzhivanian T.I., Bakhmutov D.V., Lukashev A.N., Gmyl L.V. et al. Microevolution of tick-borne encephalitis virus in course of host alternation. Virology. 2007; 362 (1): 75–84.
  4. Chan M.S., Maiden M.C., Spratt B.G. Database-driven multi locus sequence typing (MLST) of bacterial pathogens. Bioinformatics. 2001; 17 (11): 1077–83.
  5. Perez-Losada M., Browne E.B., Madsen A., Wirth T., Viscidi R.P., Crandall K.A. Population genetics of microbial pathogens estimated from multilocus sequence typing (MLST) data. Infect. Genet. Evol. 2006; 6 (2): 97–112.
  6. Kovalev S.Y., Mukhacheva T.A. Clusteron structure of tick-borne encephalitis virus populations. Infect. Genet Evol. 2013; 14:22–8.
  7. Kovalev S.Y., Mukhacheva T.A. Clusterons as a Tool for Monitoring Populations of Tick-Borne Encephalitis Virus. J. Med. Virol. 2014; 86 (2):283–9.
  8. Kovalev S.Y., Chernykh D.N., Kokorev V.S., Snitkovskaya T.E., Romanenko V.V. Origin and distribution of tick-borne encephalitis virus strains of the Siberian subtype in the Middle Urals, the northwest of Russia and the Baltic countries. J. Gen. Virol. 2009; 90 (Pt. 12): 2884–92.
  9. Roehrig J.T. Antigenic structure of flavivirus proteins. Adv. Virus Res. 2003; 59: 141–75.
  10. Zanotto P.M., Gao G.F., Gritsun T., Marin M.S., Jiang W.R., Venugopal K.et al. An arbovirus cline across the northern hemisphere. Virology. 1995; 210 (1): 152–9.
  11. McGuire K., Holmes E.C., Gao G.F., Reid H.W., Gould E.A. Tracing the origins of louping ill virus by molecular phylogenetic analysis. J. Gen. Virol. 1998; 79 (Pt. 5): 981–8.
  12. Gao G.F., Hussain M.H., Reid H.W., Gould E.A. Classification of a new member of the TBE flavivirus subgroup by its immunological, pathogenetic and molecular characteristics: identification of subgroup-specific pentapeptides. Virus Res. 1993; 30 (2): 129–44.
  13. Mandl C.W., Holzmann H., Kunz C., Heinz F.X. Complete genomic sequence of Powassan virus: evaluation of genetic elements in tickborne versus mosquito-borne flaviviruses. Virology. 1993; 194 (1): 173–84.
  14. Marin M.S., Zanotto P.M., Gritsun T.S., Gould E.A. Phylogeny of TYU, SRE, and CFA virus: different evolutionary rates in the genus Flavivirus. Virology. 1995; 206 (2): 1133–9.
  15. Suzuki Y. Multiple transmissions of tick-borne encephalitis virus between Japan and Russia. Genes Genet. Syst. 2007; 82 (3): 187–95.
  16. Zanotto P.M., Gould E.A., Gao G.F., Harvey P.H., Holmes E.C. Population dynamics of flaviviruses revealed by molecular phylogenies. Proc. Natl. Acad. Sci. U S A. 1996; 93 (2): 548–53.
  17. Weidmann M., Ruzek D., Krivanec K., Zoller G., Essbauer S., Pfeffer M. et al. Relation of genetic phylogeny and geographical distance of tick-borne encephalitis virus in central Europe. J. Gen. Virol. 2011; 92 (Pt. 8): 1906–16.
  18. Ecker M., Allison S.L., Meixner T., Heinz F.X. Sequence analysis and genetic classification of tick-borne encephalitis viruses from Europe and Asia. J. Gen. Virol. 1999; 80 (Pt. 1): 179–85.
  19. Golovljova I., Katargina O., Geller J., Tallo T., Mittzenkov V., Vene S.et al. Unique signature amino acid substitution in Baltic tick-borne encephalitis virus (TBEV) strains within the Siberian TBEV subtype. Int. J. Med. Microbiol. 2008; 298 (S. 1): 108–20.
  20. Карань Л.С., Погодина В.В., Фролова Т.В., Платонов А.Е. Генетические различия восточно-европейской азиатской популяции вируса клещевого энцефалита сибирского подтипа. Бюллетень сибирской медицины. 2006; 5: 24–7.
  21. Bandelt H.J., Forster P., Rohl A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 1999; 16 (1): 37–48.
  22. Шелкова Е.С., Ковтун О.П., Романенко В.В. Клинико-эпидемиологические особенности клещевого энцефалита в Свердловской области в периоде массовой иммунизации. Неврологический вестник. 2007; 39 (1): 75–9.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Kovalev S.Y., Mukhacheva T.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС77-77676 от 29.01.2020.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies