CONSTRUCTION OF MOSAIC HBC PARTICLES PRESENTING CONSERVATIVE FRAGMENTS OF M2 PROTEIN AND HEMAGGLUTININ OF INFLUENZA A VIRUS

Cover Page


Cite item

Abstract

Virus-like HBc particles formed as a result of the self-assembly of the nuclear antigen of the hepatitis B virus can be used as a highly immunogenic carrier for the presentation of foreign epitopes when creating recombinant vaccines. We use this vehicle to create influenza vaccines based on the conservative antigens of the influenza virus, the extracellular domain of the transmembrane protein M2 (M2e) and the fragment of the second subunit of hemagglutinin (HA2). Presentation on the surface of HBc particles should improve the immunogenicity of these peptides. Using genetic engineering techniques, we obtained a fusion protein in which the HA2 sequence is attached to the N-terminus of the HBc antigen, and the M2e peptide is included in the immunodominant loop region exposed on the surface of HBc particle. The hybrid protein expressed in Escherichia coli and purified under denaturing conditions formed virus-like HBc particles after refolding in vitro. Refolding of this protein in the presence of a previously denatured HBc antigen carrying no inserts resulted in formation of mosaic virus-like particles. The developed method will allow construction of mosaic HBc particles carrying different target epitopes of the influenza virus by combining the corresponding modified HBc proteins, which opens the possibility of creating vaccines with a wider spectrum of protection.

About the authors

E. A. Blokhina

Federal Research Centre «Fundamentals of Biotechnology»

Author for correspondence.
Email: Blohina-lena87@mail.ru
Russian Federation

N. V. Ravin

Federal Research Centre «Fundamentals of Biotechnology»

Email: noemail@neicon.ru
Russian Federation

References

  1. Ulrich R., Nassal M., Meisel H., Krüger D. H. Core particles of hepatitis B virus as carrier for foreign epitopes. Adv. Virus Res. 1998; 50: 141-82.
  2. Pumpens P., Grens E. HBV core particles as a carrier for B cell/T cell epitopes. Intervirology. 2001; 44(2-3): 98-114.
  3. Crowther R.A., Kiselev N.A., Bottcher B., Berriman J.A., Borisova G.P., Ose V., et al. Three-dimensional structure of hepatitis B virus core particles determined by electron cryomicroscopy. Cell. 1994; 77(6): 943-50.
  4. Bottcher B., Wynne S.A., Crowther R.A. Determination of the fold of the core protein of hepatitis B virus by electron cryomicroscopy. Nature. 1997; 386(6620): 88-91.
  5. Wynne S.A., Crowther R.A., Leslie A.G. The crystal structure of the human hepatitisB virus capsid. Mol. Cell. 1999; 3(6): 771-80.
  6. Kratz P.A., Bottcher B., Nassal M. Native display of complete foreign protein domains on the surface of hepatitis B virus capsids. Proc. Natl. Acad. Sci. USA. 1999; 96(5): 1915-20.
  7. Vogel M., Diez M., Eisfeld J., Nassal M. In vitro assembly of mosaic hepatitis B virus capsid-like particles (CLPs): rescue into CLPs of assembly-deficient core protein fusions and FRET-suited CLPs. FEBS Lett. 2005; 579(23): 5211-6.
  8. Robinson C.R., Sauer R.T. Optimizing the stability of single-chain proteins by linker length and composition mutagenesis. Proc. Natl. Acad. Sci. USA. 1998; 95(11): 5929-34.
  9. Kazaks A., Borisova G., Cvetkova S., Kovalevska L., Ose V., Sominskaya I., et al. Mosaic hepatitis B virus core particles presenting the complete preS sequence of the viral envelope on their surface. J. Gen. Virol. 2004; 85(Pt. 9): 2665-70.
  10. Koletzki D., Zankl A., Gelderblom H.R., Meisel H., Dislers A., Borisova G., et al. Mosaic hepatitis B virus core particles allow insertion of extended foreign protein segments. J. Gen. Virol. 1997; 78 (Pt. 8): 2049-53.
  11. Hatton T., Zhou S., Standing D.N. RNA- and DNA-binding activities in hepatitis B virus capsid protein: a model for their roles in viral replication. J. Virol. 1992; 66(9): 5232-41.
  12. Neirynck S., Deroo T., Saelens X., Vanlandschoot P., Jou W.M., Fiers W. A universal influenza A vaccine based on the extracellular domain of the M2 protein. Nat. Med. 1999; 5(10): 1157-63.
  13. Fiers W., De Filette M., El Bakkouri K., Schepens B., Roose K., Schotsaert M., et al. M2e-based universal influenza A vaccine. Vaccine. 2009; 27(45): 6280-3.
  14. Ito T., Gorman O.T., Kawaoka Y., Bean W.J., Webster R.G. Evolutionary analysis of the influenza A virus M gene with comparison of the M1 and M2 proteins. J. Virol. 1991; 65(10): 5491-8.
  15. Feng J., Zhang M., Mozdzanowska K., Zharikova D., Hoff H., Wunner W., et al. Influenza A virus infection engenders a poor antibody response against the ectodomain of matrix protein 2. Virol. J. 2006; 3: 102.
  16. Ravin N.V., Blokhina E.A., Kuprianov V.V., Stepanova L.A., Shaldjan A.A., Kovaleva A.A., et al. Development of a candidate influenza vaccine based on virus-like particles displaying influenza M2e peptide into the immunodominant loop region of hepatitis B core antigen: Insertion of multiple copies of M2e increases immunogenicity and protective efficiency. Vaccine. 2015; 33(29): 3392-7.
  17. Tsybalova L.M., Stepanova L.A., Kuprianov V.V., Blokhina E.A., Potapchuk M.V., Korotkov A.V., et al. Development of a candidate influenza vaccine based on virus-like particles displaying influenza M2e peptide into the immunodominant region of hepatitis B core antigen: Broad protective efficacy of particles carrying four copies of M2e. Vaccine. 2015; 33(29): 3398-406.
  18. Wang T.T., Tan G.S., Hai R., Pica N., Ngai L., Ekiert D.C., et al. Vaccination with a synthetic peptide from the influenza virus hemagglutinin provides protection against distinct viral subtypes. Proc. Natl. Acad. Sci. USA. 2010; 107(44): 18979-84.
  19. Zhang H., Wang L., Compans R.W., Wang B.Z. Universal influenza vaccines, a dream to be realized soon. Viruses. 2014; 6(5): 1974-91.
  20. Stepanova L.A., Sergeeva M.V., Shuklina M.A., Shaldzhyan A.A., Potapchuk M.V., Korotkov A.V., et al. A fusion protein based on the second subunit of hemagglutinin of influenza A/H2N2 viruses provides cross immunity. Acta Naturae. 2016; 8(2): 116-26.
  21. Blokhina E.A., Kuprianov V.V., Tsybalova L.M., Kiselev O.I., Ravin N.V., Skryabin K.G. A molecular assembly system for presentation of antigens on the surface of HBcvirus-like particles. Virology. 2013; 435(2): 293-300.
  22. De Filette M., Min Jou W., Birkett A., Lyons K., Schultz B., Tonkyro A., et al. Uni-versal influenza A vaccine: optimization of M2-based constructs. Virology. 2005; 337(1): 149-61.
  23. Riedl P., Stober D., Oehninger C., Melber K., Reimann J., Schirmbeck R. Priming Th1 immunity to viral core particles is facilitated by traceamounts of RNA bound to its arginine-rich domain. J. Immunol. 2002; 168(10): 4951-9.
  24. Kotlyarov R.Y., Kuprianov V.V., Migunov A.I., Stepanova L.A., Tsybalova L.M., Kiselev O.I., et al. Development of Recombinant Vaccine Against A(H1N1) 2009 Influenza Based on Virus-like Nanoparticles Carrying the Extracellular Domain of M2 Protein. Acta Naturae. 2010; 2(2): 71-7.
  25. De Filette M., Fiers W., Martens W., Birkett A., Ramne A., Löwenadler B., et al. Improved design and intranasal delivery of an M2e-based human influenza A vaccine. Vaccine. 2006; 24(44-46): 6597-601.

Copyright (c) 2018 Blokhina E.A., Ravin N.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС77-77676 от 29.01.2020.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies