COMPARISON OF INFLUENZA A VIRUS INHIBITION IN VITRO BY SIRNA COMPLEXES WITH CHITOSAN DERIVATIVES, POLYETHYLENEIMINE AND HYBRID POLYARGININE-INORGANIC MICROCAPSULES

Cover Page


Cite item

Full Text

Abstract

Anti-influenza drugs and vaccines have a limited effect due to the high mutation rate of virus genome. The direct impact on the conservative virus genome regions should significantly improve therapeutic effectiveness. The RNA interference mechanism (RNAi) is one of the modern approaches used to solve this problem. In this work, we have investigated the antiviral activity of small interfering RNA (siRNA) against the influenza A/PR/8/34 (H1N1), targeting conserved regions of NP and PA. Polycations were used for intracellular siRNA delivery: chitosan’s derivatives (methylglycol and quaternized chitosan), polyethyleneimine, lipofectamine, and hybrid organic/non-organic microcapsules. A comparative study of these delivery systems with fluorescent labeled siRNA was conducted. The antiviral activity of three small interfering RNAs targeting the NP (NP-717, NP-1496) and PA (PA-1630) influenza A viruses genes was demonstrated, depending on the chosen carrier. The most effective intracellular delivery and antiviral activity were observed for hybrid microcapsules.

About the authors

A. V. Petrova-Brodskaya

Research Institute of Influenza; Peter the Great St. Petersburg Polytechnic University

Author for correspondence.
Email: alexandra.b_05@mail.ru
Russian Federation

A. B. Bondarenko

Research Institute of Influenza; St. Petersburg State University

Email: noemail@neicon.ru
Russian Federation

A. S. Timin

Peter the Great St. Petersburg Polytechnic University; National Research Tomsk Polytechnic University

Email: noemail@neicon.ru
Russian Federation

M. A. Plotnikova

Research Institute of Influenza

Email: noemail@neicon.ru
Russian Federation

M. V. Afanas’Ev

Research Institute of Influenza; St. Petersburg State University

Email: noemail@neicon.ru
Russian Federation

A. A. Semenova

St. Petersburg State Chemical Pharmaceutical Academy

Email: noemail@neicon.ru
Russian Federation

K. I. Lebedev

Research Institute of Influenza

Email: noemail@neicon.ru
Russian Federation

A. N. Gorshkov

Research Institute of Influenza; Institute of Cytology

Email: noemail@neicon.ru
Russian Federation

M. Yu. Gorshkova

A.V. Topchiev Institute of Petrochemical Synthesis

Email: noemail@neicon.ru
Russian Federation

V. V. Egorov

Research Institute of Influenza

Email: noemail@neicon.ru
Russian Federation

S. A. Klotchenko

Research Institute of Influenza

Email: noemail@neicon.ru
Russian Federation

A. V. Vasin

Research Institute of Influenza; Peter the Great St. Petersburg Polytechnic University

Email: noemail@neicon.ru
Russian Federation

References

  1. Всемирная организация здравоохранения. Информационный бюллетень о гриппе № 211. Available at: http://www.who.int/mediacentre/factsheets/fs211/ru
  2. Киселёв О.И., Цыбалова Л.М., Покровский В.И., ред. Грипп: эпидемиология, диагностика, лечение, профилактика. М.: Медицинское информационное агентство; 2012.
  3. Kurreck J. RNA interference: from basic research to therapeutic applications. Angew. Chem. Int. Ed. Engl. 2009; 48(8): 1378-98.
  4. Castel S.E., Martienssen R.A. RNA interference in the nucleus: roles for small RNAs in transcription, epigenetics and beyond. Nat. Rev. Genet. 2013; 14(2): 100-12.
  5. Ballarín-González B., Thomsen T.B., Howard K.A. Clinical translation of RNAi-based treatments for respiratory diseases. Drug Deliv. Transl. Res. 2013; 3(1): 84-99.
  6. Haussecker D. Current issues of RNAi therapeutics delivery and development. J. Control. Release. 2014; 195: 49-54.
  7. Горшков А.Н., Петрова А.В., Васин А.В. РНК-интерференция и патогенез вируса гриппа А. Цитология. 2017; 59(8): 517-33
  8. Maillard P.V, Ciaudo C., Marchais A., Li Y., Jay F., Ding S.W., et al. Antiviral RNA interference in mammalian cells. Science. 2013; 342(6155): 235-8.
  9. Wang J., Lu Z., Wientjes M.G., Au J.L. Delivery of siRNA therapeutics: barriers and carriers. AAPS J. 2010; 12(4): 492-503.
  10. Whitehead K.A., Langer R., Anderson D.G. Knocking down barriers: advances in siRNA delivery. Nat. Rev. Drug. Discov. 2009; 8(2):129-38.
  11. Faizuloev E., Marova A., Nikonova A., Volkova I., Gorshkova M., Izumrudov V. Water-soluble N-[(2-hydroxy-3-trimethylammonium)propyl]chitosan chloride as a nucleic acids vector for cell transfection. Carbohydr. Polym. 2012; 89(4): 1088-94.
  12. Timin A.S., Muslimov A.R., Petrova A.V., Lepik K.V., Okilova M.V., Vasin A.V., et al. Hybrid inorganic-organic capsules for efficient intracellular delivery of novel siRNAs against influenza A (H1N1) virus infection. Sci. Rep. 2017; 7(1): 102.
  13. Elbashir S.M., Lendeckel W., Tuschl T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes. Dev. 2001; 15(2): 188-200.
  14. Reynolds A., Leake D., Boese Q., Scaringe S., Marshall W.S., Khvorova A. Rational siRNA design for RNA interference. Nat. Biotechnol. 2004; 22(3): 326-30.
  15. WHO. Manual for the laboratory diagnosis and virological surveillance of influenza. Available at: http://www.who.int/influenza/gisrs_laboratory/manual_diagnosis_surveillance_influenza/en/
  16. Reed L.J., Muench H. A simple method of estimating fifty per cent endpoints. Am. J. Epidemiol. 1938; 27(3): 493-7.
  17. Ge Q., McManus M.T., Nguyen T., Shen C.H., Sharp P.A., Eisen H.N., et al. RNA interference of influenza virus production by directly targeting mRNA for degradation and indirectly inhibiting all viral RNA transcription. Proc. Natl. Acad. Sci. USA. 2003; 100(5): 2718-23.
  18. Ganas C., Weiß A., Nazarenus M., Rösler S., Kissel T., Rivera Gil P., et al. Biodegradable capsules as non-viral vectors for in vitro delivery of PEI/siRNA polyplexes for efficient gene silencing. J. Control. Release. 2014; 196: 132-8.
  19. Петрова А.В., Горшков А.Н., Егоров В.В., Бондаренко А.Б., Шурыгина А.П.С., Грудинина Н.А. и др. Оценка трансфекционной способности производных хитозана в качестве носителей для доставки коротких интерферирующих РНК. Естественные и математические науки в современном мире. 2015; (36-37): 142-8
  20. Pack D.W., Hoffman A.S., Pun S., Stayton P.S. Design and development of polymers for gene delivery. Nat. Rev. Drug Discov. 2005; 4(7): 581-93.
  21. Höbel S., Aigner A. Polyethylenimines for siRNA and miRNA delivery in vivo. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2013; 5(5): 484-501.
  22. Kumar M. A review of chitin and chitosan applications. React. Funct. Polym. 2000; 46(1): 1-27.
  23. Ramsey J.M., Hibbitts A., Barlow J., Kelly C., Sivadas N., Cryan S.A. ‘Smart’ non-viral delivery systems for targeted delivery of RNAi to the lungs. Ther. Deliv. 2013; 4(1): 59-76.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Petrova-Brodskaya A.V., Bondarenko A.B., Timin A.S., Plotnikova M.A., Afanas’Ev M.V., Semenova A.A., Lebedev K.I., Gorshkov A.N., Gorshkova M.Y., Egorov V.V., Klotchenko S.A., Vasin A.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС77-77676 от 29.01.2020.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies