CYTOKINES AND ANTIBODIES IN EXPERIMENTAL INFECTION OF WILD AND LABORATORY RODENTS (RODENTIA) WITH TICK-BORNE ENCEPHALITIS VIRUS

Cover Page


Cite item

Full Text

Abstract

Persistence modeling was performed by means of infection of the wild rodents: northern red-backed vole Myodes rutilus (Pallas, 1779) and striped field mouse Apodemus agrarius (Pallas, 1771), as well as of laboratory mice with the tick-borne encephalitis virus (TBEV) in tick suspensions with subsequent detection of the TBEV, hemagglutination inhibition and virus-neutralizing antibodies, as well as expression of cytokine genes during 4 months. Detection rate of the TBEV RNA and antigen E remained high during the whole period of observations; however, virus pathogenic for laboratory suckling mice was isolated mainly during a period of 8 days post infection. At the late stages of the persistent infection (1-4 months) the TBEV RNA detection rate in northern red-backed voles and laboratory mice remained high, whereas in striped field mice it significantly declined (p < 0.001). The viral loads were significantly higher (p < 0.001) in the wild rodents compared to the laboratory mice. Average frequencies of Th2 cytokine gene expression were similar for M. rutilus (50.0 ± 8.5%) and A. agrarius (50.0 ± 9.6%) during the whole period, but Th1 cytokine mRNA detection rate after transcription activation in 2 days post infection and subsequent return to the original values were different (22.2 ± 5.0% and 38.1 ± 7.6%, respectively (p > 0.05)). Meanwhile, a part of animals with interleukin 1β mRNA was significantly higher among A. agrarius than among M. rutilus (p < 0.05), which might cause low levels of spontaneous TBEV infection of field mice compared to red voles. Hemagglutination inhibition and virus-neutralizing antibodies were revealed in wild rodents in 30 days post infection and remained at detectable levels during 4 months. Thus, the TBEV persistence in small rodents was accompanied by the detection of the pathogenic virus in the early period, the viral RNA and antigen E during 4 months with high viral loads in wild animals exceeding the values in laboratory mice. Changes in the proinflammatory cytokine gene expression frequencies and the TBEV-specific antibodies pointed at immunomodulation as the possible mechanism of the TBEV persistence.

About the authors

V. N. Bakhvalova

Institute of Systematics and Ecology of Animals

Author for correspondence.
Email: noemail@neicon.ru
Russian Federation

V. V. Panov

Institute of Systematics and Ecology of Animals

Email: noemail@neicon.ru
Russian Federation

O. F. Potapova

Institute of Systematics and Ecology of Animals

Email: noemail@neicon.ru
Russian Federation

O. V. Morozova

D.I. Ivanovsky Institute of Virology «Federal Research Center of Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya»; Federal Research Clinical Center of Physical-Chemical Medicine

Email: omorozova2010@gmail.com
Russian Federation

References

  1. Brian T.D. Viruses and the Cellular Immune Response. New York: Marcel Dekker; 1993.
  2. Donoso Mantke O., Karan L.S., Růžek D. Tick-borne encephalitis viruses: a general overview. In: Růžek D., ed. Flavivirus Encephalitis. Rijeka: InTech; 2011: 133-56.
  3. Коренберг Э.И., Помелова В.Г, Осин Н.С. Природноочаговые инфекции, передающиеся иксодовыми клещами. М.: Наука; 2013.
  4. Верета Л.А. Иммунология клещевого энцефалита по материалам экспериментальных и клинико-эпидемиологических исследований в очагах Приамурья: Автореф. дисс. … д-ра мед. наук. М.: 1969.
  5. Погодина В.В., Фролова М.П., Ерман Б.А. Хронический клещевой энцефалит. Новосибирск: Наука; 1986.
  6. Бахвалова В.Н., Панов В.В., Потапова О.Ф., Матвеева В.А., Матвеев Л.Э., Морозова О.В. Персистенция вируса клещевого энцефалита в организме диких мелких млекопитающих и в культурах пермиссивных клеток. Дальневосточный журнал инфекционной патологии. 2007; (11): 79-86.
  7. Филиппова Н.А. Систематика и эволюция. В кн. Филиппова Н.А., ред. Таежный клещ Ixodes persulcatus Schulze (Acarina, Ixodidae): морфология, систематика, экология, медицинское значение. Ленинград: Наука; 1985: 97-187.
  8. Панов В.В. Мелкие млекопитающие лесопарковой зоны ННЦ - прокормители преимагинальных фаз таёжного клеща. В кн: Власов В.В., Репин В.Е., ред. Инфекции, передаваемые клещами в сибирском регионе. Новосибирск: Сибирское отделение Российской академии наук; 2011: 35-50.
  9. Bakhvalova V.N., Dobrotvorsky A.K., Panov V.V., Matveeva V.A., Tkachev S.E., Morozova O.V. Natural tick-borne encephalitis virus infection among wild small mammals in the South-Eastern part of Western Siberia, Russia. Vector Borne Zoonotic. Dis. 2006; 6(1): 32-41
  10. Бахвалова В.Н., Чичерина Г.С., Панов В.В., Глупов В.В., Морозова О.В. Биоразнообразие вируса клещевого энцефалита в иксодовых клещах и мелких млекопитающих на территории Новосибирской обл. Инфекционные болезни. 2015; 13(4): 15-21.
  11. Морозова О.В., Гришечкин А.Е., Бахвалова В.Н., Исаева Е.И., Подчерняева Р.Я. Динамика репродукции вируса клещевого энцефалита в культурах клеток. Вопросы вирусологии. 2012; 57(2): 40-3.
  12. Морозова О.В., Бахвалова В.Н., Чичерина Г.С., Потапова О.Ф., Исаева Е.И. Cравнение экспрессии генов цитокинов у мышей, иммунизированных или заражённых вирусом клещевого энцефалита. В кн. Ершов Ф.И., Наровлянский А.Н., ред. Интерферон - 2011. Сборник научных статей к 80-летию академика РАМН Ф.И. Ершова. М.; 2012: 461-5.
  13. Clarke D.H., Casals J. Techniques for hemagglutination and hemagglutination-inhibition with arthropod-borne viruses. Amer. J. Trop. Med. Hyg. 1958; 7(5): 561-73
  14. Дерябин П.Г., Лебедева Г.А., Логинова Н.В. Реакция нейтрализации тогавирусов на мышах и культурах клеток. В кн.: Гайдамович С.Я., ред. Арбовирусы (методы лабораторных и полевых исследований). М.: Наука; 1986: 120-6.
  15. Лакин Г.Ф. Биометрия. М.: Высшая школа; 1980.
  16. Cартакова М.Л., Коненков В.И. Структурные основы межклеточных взаимодействий в процессе представления антигенов Т-лимфоцитам: молекулы главного комплекса гистосовместимости, как одна из составляющих частей тримолекулярного комплекса. Успехи современной биологии. 1997; 117(5): 568-83.
  17. Игнатьев Г.М., Отрашевская Е.В., Воробьева М.С. Активность цитокинов при иммунизации вакциной против клещевого энцефалита в эксперименте. Вопросы вирусологии. 2003; 48(2): 22-5.
  18. Mansfield K.L., Johnson N., Phipps L.P., Stephenson J.R., Fooks A.R., Solomon T. Tick-borne encephalitis virus - a review of an emerging zoonosis. J. Gen. Virol. 2009; 90(Pt. 8): 1781-94
  19. Бахвалова В.Н., Чичерина Г.С., Панов В.В., Глупов В.В., Морозова О.В. Распределение генетических типов вируса клещевого энцефалита среди спонтанно инфицированных иксодовых клещей и мелких млекопитающих на территории Новосибирской области. Эпидемиология и инфекционные болезни. 2015; 20(4): 26-34.
  20. Бахвалова В.Н. Эпизоотическое состояние природного очага клещевого энцефалита и особенности вирусной популяции в лесостепном Приобье (Западная Сибирь). Автореф. дисс. … канд. биол. наук. Кольцово; 1995.
  21. Чунихин С.П. Экспериментальные исследования по экологии вируса клещевого энцефалита. Вопросы вирусологии. 1990; 35(3): 183-8.
  22. Мак В.В., Панов В.В., Добротворский А.К., Мошкин М.П. Сопряженная изменчивость иммунореактивности и агрессивности у самцов красной полевки (Clethrionomys rutilus) и полевой мыши (Apodemus agrarius). Зоологический журнал. 2002; 81(10): 1260-4.
  23. Москвитина Н.С., Кравченко Л.Б., Мак В.В., Добротворский А.К., Панов В.В., Андреевских А.В. и др. Иммунореактивность разных демографических групп в городских популяциях полевой мыши Apodemus agrarius (Rodentia, Muridae). Зоологический журнал. 2004; 83(4): 480-6.
  24. Балашов Ю.С. Роль слюнных желез иксодовых клещей (Ixodidae) в регуляции процесса питания. Паразитология. 1994; 28(6): 437-44.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Bakhvalova V.N., Panov V.V., Potapova O.F., Morozova O.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС77-77676 от 29.01.2020.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies