ADAPTATION OF HUMAN ROTAVIRUS STRAINS OF GROUP A TO THE REPRODUCTION IN PASSAGED CELL CULTURES

Cover Page


Cite item

Full Text

Abstract

The incidence of rotavirus gastroenteritis in the world still has no tendency to reduction. The development of an effective vaccine would reduce or, in the future, even defeat this highly contagious dangerous disease. However, both in Russia and abroad there is still no developed technique for adapting and cultivating strains of the human rotavirus A that would stably produce a high "yield" of virus progeny in transplanted culture cells. The phenomenon of gene exchange for the segmented genome of rotavirus was used by foreign researchers to create the rotavirus vaccine using reassortant strains which are the result of joint cultivation of low-titer (1-2·106 virions per ml) human rotavirus strains and rotavirus strains of animals, such as monkey rotavirus SA-11 or Nebraska calf rotavirus diarrhea providing a relatively high "yield" of virus progeny (1·107-1·108). It is clear that such vaccine compositions will not be able to replace a full-fledged vaccine of human rotavirus strains of different serotypes, but they can be used for the time being as a solution to the problem. Ideally, a rotavirus vaccine is needed that includes the full set of G and P serotypes of rotaviruses circulating in the territory of their application. The paper describes an original technique for adaptation and cultivation of human rotaviruses of group A on the culture of transplantable cells developed by the authors. This technique allows 5·108 virions to be obtained per 1 ml of culture fluid. High-titer cultivated strains of human rotavirus that can be used as vaccine strains were obtained, as well as highly-active antigens for the construction of diagnostic test-systems.

About the authors

S. A. Kolpakov

Rostov Scienific Research institute of Microbiology and Parasitology

Author for correspondence.
Email: kolpakov1953@mail.ru
Russian Federation

E. P. Kolpakova

Rostov Scienific Research institute of Microbiology and Parasitology

Email: noemail@neicon.ru
Russian Federation

References

  1. Институт полиомиелита и вирусных энцефалитов АМН СССР. Ротавирусная инфекция (Методические рекомендации). М.; 1989
  2. Ogilvie I., Khoury H., El Khoury A.C., Goetghebeur M.M. Burden of rotavirus gastroenteritis in the pediatric population in Central and Eastern Europe: serotype distribution and burden of illness. Hum. Vaccin. 2011; 7(5): 523-33.
  3. Global networks for surveillance of rotavirus gastroenteritis, 2001-200. Wkly Epidemiol. Rec. 2008; 83(47): 421-5.
  4. Колпаков С.А., Зарубинский В.Я. Разработка эритроцитарного препарата для диагностики ротавирусных инфекций. В кн.: Новохатский А.С., ред. Проблемы медицинской и санитарной микробиологии города. Ростов-на-Дону; 1987.
  5. Зарубинский В.Я., Колпаков С.А. Применение реакции непрямой гемагглютинации для диагностики ротавирусного гастроэнтерита. Вопросы вирусологии. 1989; 34(2): 250-4.
  6. Симованьян Э.Н., Ловердо Р.Г., Зарубинский В.Я., Колпаков С.А., Авроров В.П. Клиника, диагностика и лечение ротавирусной инфекции у детей раннего возраста. Педиатрия. 1989; (2): 47-50.
  7. Алексеев К.П., Кальнов С.Л., Гребенникова Т.В., Алипер Т.И. Ротавирусная инфекция человека. Стратегии Вакцинопрофилактики. Вопросы вирусологии. 2016; 61(4): 154-9.
  8. Куличенко Т.В. Лечение и вакцинопрофилактика ротавирусной инфекции у детей. Педиатрическая фармакология. 2007; 4(1): 42-7.
  9. Таточенко В.К., Озерецкий Н.А., Федоров А.М., ред. Иммунопрофилактика-2011. 3-е изд. М.: ИПК «Контент-пресс»; 2011.
  10. Angel J., Franco M.A., Greenberg H.B. Rotavirus immune responses and correlates of protection. Curr. Opin. Virol. 2012; 2(4): 419-25.
  11. Soares-Weiser K., Maclehose H., Bergman H., Ben-Aharon I., Nagpal S., Goldberg E. et al. Vaccines for preventing rotavirus diarrhoea: vaccines in use. Cochrane Database Syst. Rev. 2012; (2): CD008521.
  12. Grading of scientific evidence - Tables 1-4: Does RV1and RV5 induce protection against rotavirus morbidity and mortality in young children both in low and high mortality settings? Available at: http://www.who.int/immunization/position_papers/rotavirus_grad_rv1_rv5_protection.pdf
  13. Giaquinto C., Dominiak-Felden G., Van Damme P., Myint T.T., Maldonado Y.A., Spoulou V. et al. Summary of effectiveness and impact of rotavirus vaccination with the oral pentavalent rotavirus vaccine: a systematic review of the experience in industrialized countries. Hum. Vaccin. 2011; 7(7): 734-48.
  14. Ротавирусный гастроэнтерит. Противоэпидемические мероприятия. Пособие для врачей. Нижний Новгород; 1999
  15. Laemmli U.K. Cleavage of structural proteins during the assembly of the head bacteriophage. Nature. 1970; 227(5259): 680-5.
  16. Almeida J.D., Hall T., Banatvala J.E., Totterdell B.M., Chrystie I.L. The effect of trypsin on the growth of rotavirus. J. Gen. Virol. 1978; 40(1): 213-8.
  17. Graham D.Y., Estes M.K. Proteolitic enhancement of rotavirus infectivity: biologic mechanism. Virology. 1980; 101(2): 432-9.
  18. Ramia S., Sattar S.A. Proteolytic enzymes and rotavirus SA-11 plaque formation. Can. J. Comp. Med. 1980; 44(2): 232-6.
  19. Estes M.K., Morris A.P. A viral enterotoxin: a new mechanism of virus induced pathogenesis. In: Paul P.S., Francis D.H. Mechanisms in the Pathogenesis of Enteric Diseases. New York: Kluwer Academic Plenum Publishers; 1999.
  20. Zhang M., Zeng C.Q., Morris A.P., Estes M.K. A functional NSP4 enterotoxin peptide secreted from rotavirus-infected cells. J. Virol. 2000; 74(24): 11663-70.
  21. Pérez J.F., Chemello M.E., Liprandi F., Ruiz M.C., Michelangeli F. Oncosis in MA104 cells is induced by rotavirus infection through an increase in intracellular Ca2+ concentration. Virology. 1998; 252(1): 17-27.
  22. Tian P., Estes M.K., Hu Y., Ball J.M., Zeng C.Q., Schilling W.P. The rotavirus nonstructural glycoprotein NSP4 mobilizes Ca2+ from the endoplasmic reticulum. J. Virol. 1995; 69(9): 5763-72.
  23. Morris A.P., Scott J.K., Ball J.M., Zeng C.Q., O’Neal W.K., Estes M.K. NSP4 elicits age-dependent diarrhea and Ca(2+)mediated I(-) influx into intestinal crypts of CF mice. Am. J. Physiol. 1999; 277(2 Pt. 1): G431-44.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Kolpakov S.A., Kolpakova E.P.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС77-77676 от 29.01.2020.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies