MORPHOLOGICAL ANALYSIS OF HEPATITIS B VIRUS WITH ESCAPE MUTATIONS IN S-gene G145R AND S143L

Cover Page


Cite item

Full Text

Abstract

Background. In terms of serological properties and immunization, the wild type of HBsAg HBV and its G145R mutant behave as different antigens. This testifies to serious structural changes, which presumably could have a significant impact on the morphogenesis of virions and subviral particles. Nevertheless, morphological and ultrastructural investigations of HBV with G145R mutation have not been carried yet. Objectives. Research of structural and morphological organization of HBV in the presence of the G145R escape mutation. Methods. Studies of sera, purified viruses and recombinant HBsAg were carried out by transmission electron microscopy by the method of negative staining and indirect reaction of immunelabeling using monoclonal antibodies of different specificity. Specimens of wild type HBV and HBV with S143L mutation obtained in an identical manner were used as the control. Results. The presence of typical virus particles of HBV was shown in the specimens of wild strain and HBV with S143L mutation. Specimens of HBV with G145R mutation were characterized by expressed morphological heterogeneity. In the initial serum and in the specimen of purified virus containing G145R mutant, large oval particles 60-70 nm and up to 200 nm in size, respectively, were found. The presence of antigen structures of HBV in all heterogeneous forms was confirmed. It was shown that forming of subviral particles in the process of expression of the recombinant HBsAg with G145R mutation depends on conditions of expression and purification of the protein. They can vary from well-formed circular and oval particles to practically unstructured fine-grained masses. Conclusion. Direct data on the impact of G145R escape-mutation in S-gene, in contrast to S143L mutation, on the morphogenesis of virions and subviral particles of HBV were obtained.

About the authors

M. V. Konopleva

Federal Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya

Author for correspondence.
Email: maria-konopleva@rambler.ru
Russian Federation

M. V. Sokolova

Federal Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya

Email: noemail@neicon.ru
Russian Federation

N. V. Shevlyagina

Federal Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya

Email: noemail@neicon.ru
Russian Federation

A. I. Bazhenov

N.V. Sklifosovsky Research Institute for Emergency Medicine of Moscow Healthcare Department

Email: noemail@neicon.ru
Russian Federation

A. A. Fel’Dsherova

Federal Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya

Email: noemail@neicon.ru
Russian Federation

M. A. Krymskij

ZAO NPK Combiotech

Email: noemail@neicon.ru
Russian Federation

V. N. Borisova

ZAO NPK Combiotech

Email: noemail@neicon.ru
Russian Federation

T. A. Semenenko

Federal Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya

Email: noemail@neicon.ru
Russian Federation

V. G. Nesterenko

Federal Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya

Email: noemail@neicon.ru
Russian Federation

A. P. Suslov

Federal Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya

Email: noemail@neicon.ru
Russian Federation

References

  1. Seitz S., Urban S., Antoni C., Böttcher B. Cryo-electron microscopy of hepatitis B virions reveals variability in envelope capsid interactions. EMBO J. 2007; 26(18): 4160-7.
  2. Zlotnick A., Venkatakrishnan B., Tan Z., Lewellyn E., Turner W., Francis S. Core protein: A pleiotropic keystone in the HBV lifecycle. Antiviral Res. 2015; 121: 82-93.
  3. Rezaee R., Poorebrahim M., Najafi S., Sadeghi S., Pourdast A., Alavian S.M. et al. Impacts of the G145R Mutation on the Structure and Immunogenic Activity of the Hepatitis B Surface Antigen: A Computational Analysis. Hepat. Mon. 2016; 16(7): e39097.
  4. Dane D.S., Cameron C.H., Briggs N.M. Virus-like particles in serum of patients with Australia-antigen-associated hepatitis. Lancet. 1970; 1(7649): 695-708.
  5. Gilbert R.J., Beales L., Blond D., Simon M.N., Lin B.Y., Chisari F.V. et al. Hepatitis B small surface antigen particles are octahedral. Proc. Natl. Acad. Sci. U.S. A. 2005; 102(41): 14783-8.
  6. Kaito M., Ohba H., Chiba J., Kohara M., Tanaka H., Fujita N. et al. The ultrastructural morphology of native hepatitis B virus. Med. Mol. Morphol. 2006; 39(3): 136-45.
  7. Bruss V. Hepatitis B virus morphogenesis. World J. Gastroenterol. 2007; 13(1): 65-73.
  8. Bruss V. A short linear sequence in the pre-S domain of the large hepatitis B virus envelope protein required for virion formation. J. Virol. 1997; 71(12): 9350-7.
  9. Poisson F., Severac A., Hourioux C., Coudeau A., Roingeard P. Both pre-S1 and S domains of hepatitis B virus envelope proteins interact with the core particle. Virology. 1997; 228(1): 115-120.
  10. Tan W.S., Dyson M.R., Murray K. Two distinct segments of the hepatitis B virus surface contribute synergistically to its assotiation with the viral core particles. J. Mol. Biol. 1999; 286(3): 797-808.
  11. Khan N., Guarnieri M., Ahn S.H., Li J., Zhou Y., Bang G. et al. Modulation of hepatitis B virus secretion by naturally occurring mutations in the S gene. J. Virol. 2004; 78(7): 3262-70.
  12. Greiner V.J., Egelé C., Oncul S., Ronzon F., Manin C., Klymchenko A. et al. Characterization of the lipid and protein organization in HBsAg viral particles by steady-state and time-resolved fluorescence spectroscopy. Biochimie. 2010; 92(8): 994-1002.
  13. Gavilanes F., Gomez-Gutierrez J., Aracil M., Gonzalez-Ros J.M., Ferragut J.A., Guerrero E. et al. Hepatitis B surface antigen. Role of lipids in maintaining the structural and antigenic properties of protein components. Biochem. J. 1990; 265(3): 857-64.
  14. Carman W.F., Zanetti A.R., Karayiannis P., Waters J., Manzillo G., Tanzi E., et al. Vaccine-induced escape mutant of hepatitis B virus. Lancet. 1990; 336(8711): 325-9.
  15. Zuckerman A.J., Zuckerman J.N. Molecular epidemiology of hepatitis B virus mutant. J. Med. Virol. 1999; 58: 193-5.
  16. Weber B. Genetic variability of the S gene of hepatitis B virus: clinical and diagnostic impact. J. Clin. Virol. 2005; 32: 102-12.
  17. Ben-Porath E., Wands J.R., Marciniak R.A., Wong M.A., Hornstein L., Ryder R. et al. Structural analysis of hepatitis B surface antigen by monoclonal antibodies. J. Clin. Invest. 1985; 76(4): 1338-47.
  18. Waters J.A., Kennedy M., Voet P., Hauser P., Petre J., Carman W. et al. Loss of the Common «A» Determinant of Hepatitis B Surface Antigen by a Vaccine-induced Escape Mutant. J. Clin. Invest. 1992; 90: 2543-7.
  19. Roohi A., Khoshnoodi J., Zarnani A.H., Shokri F. Epitope mapping of recombinant hepatitis B surface antigen by murine monoclonal antibodies. Hybridoma (Larchmt). 2005; 24(2): 71-7.
  20. Баженов А.И., Коноплева М.В., Эльгорт Д.А., Фельдшерова А.А., Хац Ю.С., Годков М.А. и др. Алгоритм серологического поиска и оценка распространенности серологически значимых HBsAg-мутаций у хронических носителей вируса гепатита В. Журнал микробиологии, эпидемиологии и иммунобиологии. 2007; (6): 30-7.
  21. Баженов А.И., Эльгорт Д.А., Фельдшерова А.А., Будницкая П.З., Никитина Н.И., Хац Ю.С. и др. Сравнительная оценка активности анти-HBs, индуцированных естественным путём или вакцинацией, в отношении различных вариантов HBsAg. Эпидемиология и вакцинопрофилактика. 2012; (2): 76-81.
  22. Крымский М.А., Борисов И.А., Яковлев М.С., Агафонов М.О., Тер-Аванесян М.Д., Суслов А.П. и др. Рекомбинантньiй штамм дрожжей Hansenula polymorpha - продуцент мутантного поверхностного антигена вируса гепатита В (варианты). Патент РФ № 2586513 C1; 2016.
  23. Ito S., Karnovsky M.J. Formaldehyde/glutaraldehyde fixatives containing trinitro compounds. J. Cell Biol. 1968; 39: 168a-9a.
  24. Reynolds E.S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 1963; 17(2): 208-12.
  25. Newman G.R., Jasani B., Williams E.D. A simple post-embedding system for the rapid demonstration of tissue antigens under the electron microscope. Histochem. J. 1983; 15(6): 543-55.
  26. Bendayan M., Zollinger M. Ultrastructural localization of antigenic sites on osmium-fixed tissues applying the protein A-gold technique. J. Histochem. Cytochem. 1983; 31(1): 101-9.
  27. Dryden K.A., Wieland S.F., Witten-Bauer C., Gerin J.L., Chisari F.V., Yeager M. Native hepatitis B virions and capsids visualized by electron cryomicroscopy. Mol. Cell. 2006; 22: 843-50.
  28. Böttcher B., Tsuji N., Takahashi H., Dyson M.R., Zhao S., Crowther R.A. et al. Peptides that block hepatitis B virus assembly: analysis by cryomicroscopy, mutagenesis and transfection. EMBO J. 1998; 17(23): 6839-45.
  29. Kalinina T., Iwanski A., Will H., Sterneck M. Deficiency in virion secretion and decreased stability of the hepatitis B virus immune escape mutant G145R. Hepatology. 2003; 38(5): 1274-81.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Konopleva M.V., Sokolova M.V., Shevlyagina N.V., Bazhenov A.I., Fel’Dsherova A.A., Krymskij M.A., Borisova V.N., Semenenko T.A., Nesterenko V.G., Suslov A.P.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС77-77676 от 29.01.2020.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies