Mouse embryonic stem cells – a new cellular system for studying the equine infectious anemia virus in vitro and in vivo

Cover Page


Cite item

Full Text

Abstract

The complexity of the pathogenesis and insufficient knowledge about the slow retroviral infections, which include equine infectious anemia, necessitates finding an adequate laboratory model for the study of the infection process and immunogenesis to create means of prevention and treatment of diseases. Data about strains and cellular tropism of the virus are discussed. It was shown that mouse embryonic stem cells (ESCS) exhibited unique properties and characteristics. In contrast to fibroblasts and other cell types, these cells can be considered as a new cell system for studying EIAV in vitro and in vivo. Under differentiation-inducing conditions they are able to reproduce in vitro embryogenesis cells and form cells of three germ layers. Differentiation of mouse ESCs in the direction of hematopoiesis could contribute new knowledge and understanding of viral tropism EIAV in vitro. ESC can be returned back to the early pre-implantation embryo. Once in the germ cell environment, they participate in the formation of tissues and organs of the developing fetus. Thus, the adaptation of the mouse ESC to the equine EIAV through genetic transformation makes it possible to get closer to the creation of a laboratory model for the study of the in vivo immune response in the lentiviral infection.

About the authors

I. P. Savchenkova

Ya.R. Kovalenko All-Russian Scientific Research Institute of Experimental Veterinary

Author for correspondence.
Email: s-ip@mail.ru
ORCID iD: 0000-0003-3560-5045

Irina P. Savchenkova, Doctor of Biology, Professor, Chief of the Laboratory of stem cells

Moscow, 109428

Russian Federation

S. V. Alekseyenkova

Ya.R. Kovalenko All-Russian Scientific Research Institute of Experimental Veterinary

Email: fake@neicon.ru
ORCID iD: 0000-0001-9580-6047
Moscow, 109428 Russian Federation

K. P. Yurov

Ya.R. Kovalenko All-Russian Scientific Research Institute of Experimental Veterinary

Email: fake@neicon.ru
ORCID iD: 0000-0002-2933-8801
Moscow, 109428 Russian Federation

References

  1. Issel C.J., Coggins L. Equine infectious anemia: current knowledge. J. Am. Vet. Med. Assoc. 1979; 174 (7): 727–33.
  2. Юров К.П., Заблоцкий В.Т., Косминков Н.Е. Инфекционные и паразитарные болезни лошадей. М.: Мастер-Класс; 2010.
  3. Montelaro R.C., Ball J.M., Rushlow K. Equine retroviruses. In: Levy J.A., ed. The Retroviridae. Plenum Press, New York; 1993; (2): 257–360.
  4. Craigo J.K., Montelaro R.C. EIAV envelope diversity: shaping viral persistence and encumbering vaccine efficacy. Curr. HIV Res. 2010; 8(1): 81–6.
  5. Craigo J.K., Montelaro R.C. Lessons in AIDS vaccine development learned from studies of equine infectious, anemia virus infection and immunity. Viruses. 2013; 5(12): 2963–76.
  6. Leroux C., Cadore J.L., Montelaro R.C. Equine infectious anemia virus (EIAV): what has HIV’s country cousin got to tell us? Vet. Res. 2004; 35(4): 485–512.
  7. Юров К.П., Алексеенкова С.В., Юров Г.К. Инфекционная анемия лошадей и её современная диагностика. Ветеринария. 2013; (4): 3–8.
  8. Olsen J.C. EIAN, CAEV and other lentivirus vector systems. Somat. Cell Mol. Genet. 2001; 26(1–6): 131–45.
  9. Farley D.C., Bannister R., Leroux-Carlucci M.A., Evans N.E., Miskin J.E., Mitrophanous K.A. Development of an equine-tropic replicationcompetent lentivirus assay for equine infectious anemia virus-based lentiviral vectors. Hum. Gene Ther. Methods. 2012; 23(5): 309–23.
  10. Kono Y., Kobayashi K. Changes in pathogenicity of equine infectious anemia virus during passages in horse leukocyte cultures. Natl. Inst. Anim. Health Q. (Tokyo). 1970; 10(3): 106–12.
  11. Kemeny L.J., Mott L.O., Pearson J.E. Titration of equine infectious anemia virus. Effect of dosage on incubation time and clinical signs. Cornell Vet. 1971; 61(4): 687–95.
  12. Carpenter S., Chesebro B. Change in host cell tropism associated with in vitro replication of equine infectious anemia virus. J. Virol. 1989; 63(6): 2492–6.
  13. Malmquist W.A., Barnett D., Becvar C.S. Production of equine infectious anemia antigen in a persistently infected cell line. Arch. Gesamte Virusforsch. 1973; 42(4): 361–70.
  14. Whetter L., Archambault D., Perry S., Gazit A., Coggins L., Yaniv A. et al. Equine infectious anemia virus derived from a molecular clone persistently infects horses. J. Virol. 1990; 64 (12): 5750–6.
  15. Юров К.П., Токарик Э.Ф., Галатюк А.Е., Самуйленко А. Люлькова Л.С., Пестова Г.В. и др. Способ изготовления культурального антигена из вируса инфекционной анемии лошадей и набор для индикации антител или антигена вируса инфекционной анемии лошадей. Патент РФ № 2146150; 2000.
  16. Maury W., Wright P.J., Bradley S. Characterization of a cytolytic strain of equine infectious anemia virus. J. Virol. 2003; 77 (4): 2385–99.
  17. Payne S.L., Fuller F.J. Virulence determinants of equine infectious anemia virus. Curr. HIV Res. 2010; 8(1): 66–72.
  18. McGuire T.C., Crawford T.B., Henson J.B. Immunofluorescent localization of equine infectious anemia virus in tissue. Am. J. Pathol. 1971; 62(2): 283–94.
  19. Rice N.R., Lequarre A.S., Casey J.W., Lahn S., Stephens R.M., Edwards J. Viral DNA in horses infected with equine infectious anemia virus. J. Virol. 1989; 63(12): 5194–200.
  20. Sellon D.C., Perry S.T., Coggins L., Fuller F.J. Wild-type equine infectious anemia virus replicates in vivo predominantly in tissue macrophages, not in peripheral blood monocytes. J. Virol. 1992; 66(10): 5906–13.21. Maury W. Monocyte maturation controls expression of equine infectious anemia virus. J. Virol. 1994; 68(10): 6270–9.
  21. Raabe M.R., Issel C.J., Montelaro R.C. Equine monocyte-derived macrophage cultures and their applications for infectivity and neutralization studies of equine infectious anemia virus. J. Virol. Methods. 1998; 71(1): 87–104.
  22. Klevjer-Anderson P., Cheevers W.P., Crawford T.B. Characterization of the infection of equine fibroblasts by equine infectious anemia virus. Arch. Virol. 1979; 60(3–4): 279–89.
  23. Payne S.L., La Celle K., Pei X.F., Qi X.M., Shao H., Steagall W.K. et al. Long terminal repeat sequences of equine infectious anemia virus are a major determinant of cell tropism. J. Gen. Virol. 1999; 80(Pt. 3): 755–9.
  24. Brindley M.A., Zhang B., Montelaro R.C., Maury W. An equine infectious anemia virus variant superinfects cells through novel receptor interactions. J. Virol. 2008; 82(19): 9425–32.
  25. Kono Y., Yoshino T. Propagation of equine infectious anemia virus in horse kidney cell cultures. Natl. Inst. Anim. Health Q. (Tokyo). 1974; 14(4): 155–62.
  26. Payne S.L., Fang F.D., Liu C.P., Dhruva B., Rwambo P., Issel C. et al. Antigenic variation and lentivirus persistence: variations in envelope gene sequences during EIAV infection resemble changes reported for sequential isolates of HIV. Virology. 1987; 161(2): 321–31.
  27. O’Rourke K.I., Perryman L.E., McGuire T.C. Antiviral, antiglycoprotein and neutralizing antibodies in foals with equine infectious anaemia virus. J. Gen. Virol. 1988; 69(Pt.3): 667–74.
  28. Maury W., Oaks J.L., Bradley S. Equine endothelial cells support productive infection of equine infectious anemia virus. J. Virol. 1998; 72 (11): 9291–7.
  29. Derse D., Dorn P.L., Levy L., Stephens R.M., Rice N.R., Casey J.W. Characterization of equine infectious anemia virus long terminal repeat. J. Virol. 1987; 61(3): 743–7.
  30. Bouillant A.M., Nielsen K., Ruckerbauer G.M., Samagh B.S., Hare W.C. The persistent infection of a canine thymus cell line by equine infectious anemia virus and preliminary data on the production of viral antigens. J. Virol. Methods. 1986; 13(4): 309–21.
  31. Beisel C.E., Edwards J.F., Dunn L.L., Rice N.R. Analysis of multiple mRNAs from pathogenic equine infectious anemia virus (EIAV) in an acutely infected horse reveals a novel protein, Ttm, derived from the carboxy terminus of the EIAV transmembrane protein. J. Virol. 1993; 67(2): 832–42.
  32. Hines R., Maury W. DH82 cells: a macrophage cell line for the replication and study of equine infectious anemia virus. J. Virol. Methods. 2001; 95(1–2): 47–56.
  33. Fidalgo-Carvalho I., Craigo J.K., Barnes S., Costa-Ramos C., Montelaro R.C. Characterization of an equine macrophage cell line: application to studies of EIAV infection. Vet. Microbiol. 2009; 136 (1–2): 8–19.
  34. Zhang B., Jin S., Jin J., Li F., Montelaro R.C. A tumor necrosis factor receptor family protein serves as a cellular receptor for the macrophage-tropic equine lentivirus. Proc. Natl. Acad. Sci. U S A. 2005; 102(28): 9918–23.
  35. Zhang B., Montelaro R.C. Replication of equine infectious anemia virus in engineered mouse NIH 3T3 cells. J. Virol. 2009; 83(4): 2034–7.
  36. Maury W., Bradley S., Wright B., Hines R. Cell specificity of the transcription-factor repertoire used by a lentivirus: motifs important for expression of equine infectious anemia virus in nonmonocytic cells. Virology. 2000; 267(2): 267–78.
  37. Савченкова И.П. Эмбриональные стволовые клетки в биологии: настоящее и будущее. Дубровицы: ВИЖ; 1999.
  38. Савченкова И.П. Эмбриональные стволовые клетки в биологии и биотехнологии. В кн.: Дьяконов Л.П., ред. Животная клетка в культуре (Методы и применение в биотехнологии). М.: Компания Спутник +; 2000: 244–73.
  39. Савченкова И.П. Эмбриональные стволовые клетки млекопитающих. В кн.: Дьяконов Л.П., ред. Животная клетка в культуре (Методы и применение в биотехнологии). М.: Компания Спутник +; 2009: 347–79.
  40. Evans M.J., Kaufman M.H. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981; 292(5819): 154–6.
  41. Martin G.R. Isolation of pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cell. Proc. Natl. Acad. Sci. U S A. 1981; 78(12): 7634–8.
  42. Wobus A.M., Boheler L.K. Embryonic stem cells: prospects for developmental biology and cell therapy. Physiol. Rev. 2005; 85(2): 635–78.
  43. Савченкова И.П. Эмбриональные стволовые клетки как потенциальный источник гамет in vitro. Проблемы репродукции. 2009; 15 (3): 54–9.
  44. Li Y., Kniss D.A., Lasky L.C., Yang S.T. Culturing and differentiation of murine embryonic stem cells in a three-dimensional fibrous. Cytotechnology. 2003; 41(1): 2–5.
  45. Cameron C.M., Hu W.S., Kaufman D.S. Improved development of human embryonic stem cell-derived embryoid bodies by stirred vessel cultivation. Biotechnol. Bioeng. 2006; 94(5): 938–48.
  46. Fridley K.M., Fernandez I., Li M.T., Kettlewell R.B., Roy K. Unique differentiation profile of mouse embryonic stem cells in rotary and stirred tank bioreactors. Tissue Eng. Part A. 2010; 16(11): 3285–98.
  47. Lu S.J., Kelley T., Feng Q., Chen A., Reuveny S., Lanza R. et al. 3D microcarrier system for efficient differentiation of human pluripotent stem cells into hematopoietic cells without feeders and serum. Regen. Med. 2013; 8(4): 413–24.
  48. Bandi S., Akkina R. Human embryonic stem cell (hES) derived dendritic cells are functionally normal and are susceptible to HIV-1 infection. AIDS Res. Ther. 2008; 5: 1–9.
  49. Kitchen S.G., Zack J.A. Stem cell-based approaches to treating HIV infection. Curr. Opin. HIV AIDS. 2011; 6(1): 68–73.
  50. Савченкова И., Фляйшманн М., Булла Й., Брэм Г. Использование эмбриональных стволовых клеток (ЭСК) мыши для получения химерных животных. Цитология. 1996; 38(10): 1118–23.
  51. Doetschman T.C., Eistetter H., Katz M., Schmidt W., Kemler R. The in vitro development of blastocyst -derived embryonic stem cell lines: Formation of visceral yolk sac, blood islands and myocardium. J. Embryol. Exp. Morphol. 1985; 87: 27–45.
  52. Robertson E.J. Embryo-derived stem cell lines. In: Robertson E.J., ed. Teratocarcinomas and Embryonic Stem Cells: a Practical Approach. Oxford: IRL Press; 1987: 71–112.
  53. Савченкова И.П., Зиновьева Н.А., Булла Й., Брэм Г. Эмбриональные стволовые клетки, их генетическое изменение путем гомологичной рекомбинации и использование в получении трансгенных животных. Успехи современной биологии. 1996; 116 (1): 78–92.
  54. Савченкова И.П. Введение гена lac-Z E. coli в эмбриональные стволовые клетки мыши Д3 электропорацией. Доклады Российской Академии Сельскохозяйственных Наук. 1996; (6): 36–7.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Savchenkova I.P., Alekseyenkova S.V., Yurov K.P.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС77-77676 от 29.01.2020.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies