Противогерпетическая активность производных нетропсина в опытах на лабораторных животных
- Выпуск: Том 57, № 4 (2012)
- Страницы: 24-26
- Раздел: Статьи
- Дата подачи: 09.06.2023
- Дата публикации: 15.08.2012
- URL: https://virusjour.crie.ru/jour/article/view/12144
- ID: 12144
Цитировать
Полный текст
Аннотация
В результате комплексных исследований противовирусной активности и токсичности двух димерных производных нетропсина (Lys-bis-Nt и 15Lys-bis-Nt) в культуре клеток и в опытах на лабораторных животных установлено, что оба соединения эффективно и селективно ингибируют репродукцию вируса герпеса простого 1-го типа как в культуре клеток Vero Е6, так и в мозге инфицированных белых мышей, обеспечивая значительное увеличение выживаемости и средней продолжительности жизни животных по сравнению с контрольной нелеченой группой.
Ключевые слова
Полный текст
Герпесвирусная инфекция является одной из самых распространенных вирусных инфекций человека: по данным ВОЗ, антитела к вирусам герпеса имеет около 80% населения Земного шара. Современная химиотерапия инфекционных заболеваний, вызываемых вирусами герпеса, связана с использованием препаратов гуанинсодержащих модифицированных ациклических нуклеозидов ацикловира (АЦВ), пенцикловира и их предлекарств валцикловира и фамцикловира. Основным недостатком препаратов этой группы, несмотря на высокий противовирусный эффект, является формирование к ним лекарственной устойчивости. Среди иммунокомпетентных пациентов частота появления АЦВ/ПЦВ-резистентных штаммов вируса простого герпеса (ВПГ) составляет около 0,5% случаев [5, 7, 18], но среди больных с иммунодефицитными состояниями она может превышать 30% случаев [7, 16, 18, 19]. Резистентность к АЦВ и ПЦВ в 95% сду-чаев обусловлена мутациями в гене тимидинкиназы (ТК), а также в гене ДНК-полимеразы, с которыми связан механизм действия этих препаратов [12, 15]. Таким образом, поиск новых соединений ненуклео-зидной природы, эффективность которых не зависит от чувствительности ВПГ к препаратам АЦВ и родственных ему соединений, в настоящее время сохраняет актуальность и практическую значимость. Нетропсин (Nt) и дистамицин (Dst), представляющие собой ДНК-тропные противоопухолевые антибиотики, обладают противовирусной активностью в отношении ВПГ. Cвязываясь в узкой бороздке ДНК с кластерами из 4-5 АТ-пар оснований в начале репли кации ВПГ OriS и OriL, Nt и Dst ингибируют процессы репликации и транскрипции [11, 14]. Синтез Nt-пептидных конъюгатов и димерных производных Nt (бис-Nt), в молекулах которых два мономера соединены друг с другом ковалентно c помощью различных соединительных цепей, позволяет повысить избирательность связывания этих соединений с вирусной ДНК и ингибировать активность ключевых вирусных ДНК-связывающих белков и транскрипционных факторов [9-11, 13, 20]. Ранее при исследовании ДНК-связывающей активности ряда бис-Nt и Nt-пептидных конъюгатов нами было установлено, что производные бис-Nt ингибируют процесс инициации репликации вирусной ДНК, т.е. действуют еще до начала синтеза вирусной ДНК. Эти соединения избирательно связываются с протяженными кластерами АТ-пар оснований в начале репликации ВПГ OriS и OriL [6, 11], в результате чего в участке OriS увеличивается температура плавления А+Т-кластера и уменьшается вероятность вызванного тепловыми флюктуациями «раскрытия» AT-пар оснований, которое необходимо для инициации раскручивания вирусной ДНК хеликазой UL9 ВПГ [6]. Мы установили, что ряд производных бис-Nt обладает противовирусной активностью в отношении ВПГ-1, включая штаммы, резистентные к АЦВ, в диапазоне концентраций, близких к таковым Nt, но характеризуется значительно меньшей токсичностью в культуре клеток Vero E6 и, следовательно, большей селективностью [1-4]. Контактная информация: Андронова Валерия Львовна, канд. биол. наук, вед. науч. сотр.; e-mail: andronova.vl@yandex.ru 24 При изучении противовирусной активности производных бис-Nt в опытах на белых мышах BALB/c было показано, что все исследованные нами производные Nt способны достоверно снижать смертность инфицированных животных, и по показателю острой токсичности имеют значительное преимущество перед Nt [2]. Целью настоящей работы было продолжение исследований противовирусной активности производных бис-Nt в опытах на белых линейных мышах. Материалы и методы Клетки. В работе использовали перевиваемую культуру клеток почек зеленой мартышки Vero Е6. Вирусы. Штамм вируса герпеса простого типа 1 L2 (ВПГ-1/L^ получен из Государственной коллекции вирусов Ф ГБУ НИИ вирусологии им. Д. И. Ивановского Минздравсоцразвития России. Препараты синтезированы в Институте молекулярной биологии им. В.А. Энгельгардта. Химические формулы производных бис-Nt: H-Lys-Gly-Apc2-CONH-(CH2)5-NHCO-Apc2-Gly-Lys-H (Lys-bis-Nt) (((H-Lysl-Lys^- Lys)2-Lys-Gly-Gly2-Apc2-Gly3-Apc2-NH-(CH2)3-NMe2 (15Lys-bis-Nt) Здесь Apc — остаток 1-Ы-пропил-2-амино-пиррол- 4-карбоновой кислоты. Цитотоксичность соединений оценивали после 72 ч инкубации клеток в присутствии соединения в известной концентрации методом окрашивания клеток трипановым синим (trypan blue exclusion method). Количественно цитотоксичность выражали как ЦД50 [1-5]. Противогерпесвирусную активность соединений in vitro изучали с использованием CPE inhibition assay [8] микрометодом, как подробно изложено ранее [1-5]. Множественность инфицирования (МИ) составляла 0,1 БОЕ/кл. Результаты оценивали через 48 ч, когда в контроле вируса развивался 95-100% цитопатический эффект (ЦПЭ). Активность выражали в величинах ИД50 и ИД95. Животные - самцы белых линейных мышей BALB/c массой тела 8-10 г (по 20 особей в группе) получены из питомника лабораторных животных Филиал «Столбовая» НЦБМТ РАМН (Московская обл., Чеховский район). При исследовании противовирусной активности соединений in vivo использовали методические приемы, описанные ранее [2]. Инфекционный материал (ВПГ-1/L^ и производные бис-Nt вводили внутрибрюшинно в объеме 0,2 мл. Заражающая доза 3,5 х 105 БОЕ/0,2 мл обеспечивала 50% смертность животных в контроле. Соединения вводили 2 раза в день в течение 5 дней. Первое введение проводили через 1 ч после заражения. Срок наблюдения - 21 сут. Эффективность соединений оценивали по их способности защищать животных от гибели и увеличению средней продолжительности жизни (СПЖ). Влияние соединений на накопление инфекционного вируса в мозге инфицированных животных. Мышей инфицировали и вводили им соединения, как указано выше. На 4-е сутки, когда в мозге зараженных животных инфекционный титр достигал максимального значения, мышей забивали. Извлеченный головной мозг гомогенизировали при 40С. Готовили 10% суспензию в физиологическом растворе, центрифугировали ее при 5000 об/мин в течение 10 мин при 40С. Инфекционный титр вируса в супернатанте определяли путем титрования в культуре клеток. Эффективность соединений оценивали по снижению величины инфекционного титра вируса в головном мозге животных в опытной группе, получавших препарат, по сравнению с контрольной группой. Инфекционный титр вируса в образцах определяли методом бляшкообразования [17] и выражали в lg БОЕ/мл. Результаты и обсуждение Как свидетельствуют данные табл. 1, включенные в исследование соединения селективно ингибируют развитие вирусиндуцированного ЦПЭ в культуре клеток, на что указывает величина химиотерапевтического индекса (ХТИ). Результаты изучения противовирусной активности исследуемых соединений на модели летальной герпесвирусной инфекции у белых линейных мышей приведены в табл. 2. Таблица 1 Эффект производных нетропсина на модели герпетической инфекции в культуре клеток Vero E6 Препарат Lys-bis-Nt 355,0 ± 1,9 12,5 50 28,4 15Lys-bis-Nt 162,6 ± 3,4 3,1 18,7 ± 6,2 52,1 Примечание. ЦД50 - концентрация соединения, в присутствии которой погибает 50% неинфицированных клеток; ИД50 - концентрации соединения, ингибирующие развитие вирусиндуцирован-ного ЦПЭ по сравнению с контролем на 50%; ИД95 - концентрации соединения, ингибирующие развитие вирусиндуцированного ЦПЭ по сравнению с контролем на 95-100%; ХТИ - химиотерапевтический индекс, вычисляемый как отношение ЦД50 к ИД50. Представлены результаты двух независимых опытов. ЦД50, мкг/мл ИД50, мкг/мл ИД95, мкг/мл ХТИ Таблица 2 Влияние производных нетропсина на выживаемость белых мышей BALB/c, инфицированных ВПГ-1 штамм L2, и репродукцию вируса в их мозге Соединение Схема инфицирования Число выживших животных Смертность, % За щита, % СПЖ, сут Инфекционный титр вируса, Lg БОЕ/мл Число животных в группе опыт 1* опыт 2* Контроль вируса - 17/40 57,5 - 11,6 ± 1,3 3,76 ± 0,03 3,68 ± 0,08 Lys-bis-Nt 20 мг/кг 2 раза в сутки/5 сут 28/40 30 27,5 16,2 ± 1,2 1,59 ± 0,06 1,72 ± 0,04 15Lys-bis-Nt 30 мг/кг 2 раза в сутки/5 сут 17/20 15 42,5 18,5 ± 1,3 1,00 ± 0,08 0,80 ± 0,10 Примечание. Приведены результаты двух независимых опытов; * - приведены результаты трех независимых определений. 25 Смертность в контрольной группе инфицированных животных, не получавших препарат, составила 57,5% (23/40) в двух независимых экспериментах. Таким образом, Lys-bis-Nt в этих условиях обеспечивал существенную статистически значимую защиту животных от гибели (27,5% в двух независимых экспериментах) и увеличивал СПЖ животных на 4,6 сут по сравнению с контрольной инфицированной, но не леченой группой. При увеличении разовой дозы 15Lys-bis-Nt до 30 мг/кг в тех же экспериментальных условиях выживаемость животных по сравнению с контрольной группой увеличилась на 45% (снижение смертности с 57,5 до 15%), а СПЖ - более чем на 7 сут. Из данных, приведенных в табл. 2, также следует, что Lys-bis-Nt и 15Lys-bis-Nt эффективно ингибируют репродукцию ВПГ в головном мозге животных, на что указывает значительное снижение инфекционного титра вируса в опытных группах по сравнению с контролем. Таким образом, установлено, что исследованные производные нетропсина Lys-bis-Nt и 15Lys-bis-Nt в данных экспериментальных условиях эффективно подавляют репродукцию ВПГ в мозге инфицированных животных, что обеспечивает защиту мышей, инфицированных ВПГ-1, от гибели и приводит к увеличению СПЖ. Работа выполнена при финансовой поддержке Государственного×
Список литературы
- Андронова В. Л., Гроховский С. Л., Суровая А. Н. и др. ДНК-связывающая и антивирусная активности бис-нетропсинов, содержащих кластеры остатков лизина на N-конце молекулы // ДАН. -- 2004. - T. 396, № 6. - С. 548-551.
- Андронова В. Л., Гроховский С. Л., Суровая А. Н. и др. Действие димерных производных нетропсина и их комбинаций с ацикловиром на герпесвирусную инфекцию мышей // ДАН. - 2007. — T. 413, № 6. -- С. 830-834.
- Андронова В. Л., Гроховский С. Л., Суровая А. Н. и др. Антивирусная и цитотоксическая активности производных нетропсина в культуре клеток Vero, инфицированных вирусами осповакцины и герпеса простого первого типа // ДАН. - 2008. — T. 420, №3. - С. 688-693.
- Андронова В. Л., Гроховский С. Л., Дерябин П. Г. и др. Изучение противовирусных свойств ДНК-связывающих соединений производных нетропсина и дистамицина на моделях вирусов герпеса простого типа 1 и осповакцины in vitro // Вопр. вирусол. 2010. - № 6. - C. 24-27.
- Львов Н.Д., Андронова В.Л., Леонтьева Н.А., Галегов Г. А. Изоляция из клинического материала штаммов вируса герпеса простого, обладающих резистентностью к ацикловиру // Вопр. вирусол. - 1999. - Т. 44, № 6. -- C. 247-249.
- Суровая А. Н., Гроховский C. Л., Гурский Я. Г. и др. Комплекс инициаторного белка UL9 вируса герпеса с ДНК как платформа для создания противовирусных лекарственных агентов нового типа // Биофизика. - 2010. - Т. 55. - С. 239--251.
- Danve-Szatanec C., Aymard M., Thouvenot D. et al. Surveillance network for herpes simplex virus resistance to antiviral drugs: 3-year follow-up // J. Clin.Microbiol. -- 2004. - Vol. 42. - P. 242-249.
- De Clerck E., Descamps J., Verheist G. et al. Comparative efficacy of antiherpes drugs against different strains of herpes simplex virus // J. Infect. Dis. - 1980. - Vol. 141. - P. 563-573.
- Dickinson L. A., Gulizia R. J., Trauger J. W. et al. Anti-repression of RNA polymerase II transcription by pyrrole-imidazole polyamides // Proc. Natl. Acad. Sci. USA. - 1998. - Vol. 95. -- P. 12890-12895.
- Gursky G. V., Zasedatelev A. S., Zhuz eA. L. et al. Synthetic sequence-specicfic ligands // Cold Spring Harbor Symp. Quant. Biol. - 1983. - Vol. 47. - P. 367-378.
- Gursky G., Nikitin A., Surovaya A. еt al. Isohelical DNA-binding oligomers: antiviral activity and application for the design of nanostructured devices // Nanomaterials for application in medicine and biology / Eds M. Giersig, G. B. Khomutov. 2008. - 17-28.
- Hill E. L., Hunter G.A., Ellis M. N. In vitro and in vivo characterization of herpes simplex virus clinical isolates recovered from patients infected with human immunodeficiency virus // Antimicrob. Agents Chemother. - 1991. - Vol. 35. - P. 2322-2328.
- Khorlin A.A., Krylov A. S., Grokhovsky S. L. et al. A new type of AT-specific ligand constructed of two netropsin-like molecules // FEBS Lett. — 1980. - Vol. 118. - P. 311-314.
- Kopka M.L., Yoon D., Goodsell D. et al. The molecular origin of DNA drug specificity in netropsin and distamycin // Proc. Natl. Acad. Sci. USA. - 1985. - Vol. 82. - P. 1376-1380.
- Morfin F., Bilger K., Ooka T. et al. Genetic characterization of thymidine kinase from acyclovir-resistant and susceptible herpes simplex virus type 1 isolated from bone marrow transplant recipients // J. Infect. Dis. - 2000. - Vol. 182. - P. 290-293.
- Morfin F., Bilger K., Boucher A., et al. HSV excretion after bone marrow transplantation: a 4-year survey // J. Clin. Virol. - 2004. -Vol. 30. - P. 341-345.
- Sarisky R. T., Nguyen T. T., Duffy K. E. et al. Difference in incidence of spontaneous mutations between herpes simplex virus types 1 and 2 // Antimicrob. Agentc and chemother. - 2000. - V. 44. № 6. - P.1524-1529.
- Sarisky R. T., Bacon T. H., Boon R. J. et al. Profiling penciclovir susceptibility and prevalence of resistance of herpes simplex virus isolates across eleven clinical trials // Arch Virol. — 2003. — Vol. 148, № 9. - Р. 1757-1769.
- Stranska R., Schuurman R., Nienhuis E. et al. Survey of acyclovir-resistant herpes simplex virus in the Netherlands: prevalence and characterization // J. Clin. Virol. - 2005. - Vol. 32. -P. 7-18.
- White S., Szewczyk J. W., Turner J. M. et al. Recognition of the four Watson-Crick base pairs in the DNA minor groove by synthetic ligands // Nature. - 1998. - Vol. 391. - P. 468-471.