Реактивация инфекции, вызванной вирусом Эпштейна–Барр (Herpesviridae: Lymphocryptovirus, HHV-4), на фоне COVID-19: эпидемиологические особенности
- Авторы: Соломай Т.В.1,2, Семененко Т.А.3,4, Филатов Н.Н.2,4, Ведунова С.Л.2, Лавров В.Ф.2,5, Смирнова Д.И.2, Грачёва А.В.2, Файзулоев Е.Б.2
-
Учреждения:
- Межрегиональное управление № 1 Федерального медико-биологического агентства
- ФГБНУ «Научно-исследовательский институт вакцин и сывороток им. И.И. Мечникова»
- ФГБУ «Национальный исследовательский центр эпидемиологии и микробиологии имени почётного академика Н.Ф. Гамалеи» Минздрава России
- ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России (Сеченовский Университет)
- ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России
- Выпуск: Том 66, № 2 (2021)
- Страницы: 152-161
- Раздел: ОРИГИНАЛЬНЫЕ ИССЛЕДОВАНИЯ
- Дата подачи: 15.05.2021
- Дата принятия к публикации: 15.05.2021
- Дата публикации: 15.05.2021
- URL: https://virusjour.crie.ru/jour/article/view/499
- DOI: https://doi.org/10.36233/0507-4088-40
- ID: 499
Цитировать
Полный текст
Аннотация
Введение. Иммунодефициты, лежащие в основе развития тяжёлых форм новой коронавирусной инфекции, могут быть следствием сочетанного инфицирования SARS-CoV-2 и другими патогенами, в том числе вирусом Эпштейна–Барр (EBV).
Цель работы – изучение эпидемиологических особенностей активной EBV-инфекции на фоне COVID-19.
Материал и методы. С марта по май 2020 г. в Москве на маркёры EBV-инфекции обследованы пациенты (95 человек), находившиеся в стационаре для лечения COVID-19, и доноры крови (92 человек).
Результаты. При сходных показателях превалентности EBV-инфекции в исследуемых группах частота обнаружения индикаторов её активности у доноров (10,9%) была значительно ниже, чем среди пациентов (80%). Достоверные различия по данному параметру установлены также между подгруппами пациентов с интерстициальной пневмонией на фоне наличия (96,6%) либо отсутствия (97,2%) SARS-CoV-2 в мазке из носоглотки и больных с лёгким течением COVID-19 (43,3%). Средние коэффициенты позитивности IgG к капсидному и ядерному антигенам вируса у доноров были больше, чем в группе пациентов (р < 0,05). У больных с маркёрами активной EBV-инфекции значительно чаще выявлялись пневмония, превышение референсных значений активности аланинаминотрансферазы (АЛТ) и относительного числа моноцитов (отношение шансов – 23,6; 3,5 и 9,7 соответственно).
Обсуждение. Настоящее исследование позволило изучить частоту распространения и проанализировать эпидемиологические особенности активной EBV-инфекции у пациентов с COVID-19.
Заключение. Значимо более высокая частота обнаружения индикаторов активной EBV-инфекции среди пациентов, находившихся на стационарном лечении по поводу COVID-19 (особенно со среднетяжёлым течением), указывает на сочетанное участие в развитии интерстициальной пневмонии SARS-CoV-2 и EBV. Наличие низких концентраций IgG к белкам последнего является предиктором реактивации вызываемого им инфекционного процесса. Превышение референсных значений активности АЛТ и относительного количества моноцитов у пациентов должно служить поводом к обследованию на маркёры EBV-инфекции.
Полный текст
Введение
Эпидемиологическая ситуация, вызванная распространением нового коронавируса в 2020 г., поставила перед органами здравоохранения большинства стран мира множество вопросов, на ряд из которых ответы до сих пор не найдены. До декабря 2019 г. возбудители острых респираторных вирусных инфекций вызывали в период сезонного подъёма только локальные эпидемические вспышки, а в остальное время года регистрировалась спорадическая заболеваемость. Появление нового инфекционного агента, получившего название SARS-CoV-2, привело к его экспансии, принявшей характер пандемии. Человечество столкнулось с новой глобальной проблемой, потребовавшей для своего решения комплексного подхода.
В настоящее время учёными всего мира проводятся исследования по выявлению и оценке особенностей эпидемического распространения SARS-CoV-2, патогенетических механизмов взаимодействия его с организмом хозяина, изучению иммунного ответа на внедрение патогена, разработке средств специфической профилактики COVID-19. Установлено, что источниками инфекции являются больные и бессимптомные носители вируса, а заражение происходит преимущественно воздушно-капельным путём. Инкубационный период в среднем составляет 6 (от 2 до 14) сут [1]. В эпидемический процесс вовлекаются все возрастные группы населения с преобладанием в структуре лиц 40–59 (35,7%) и 19–39 лет (30,8%) [2]. По опубликованным данным заболевание в лёгкой форме переносят около 80% пациентов. Тяжесть определяется наличием пневмонии, которая развивается в 5–10% случаев и может сопровождаться дыхательной и полиорганной недостаточностью. Факторами риска осложнённого течения считаются возраст, наличие хронических сердечно-сосудистых (в том числе артериальной гипертензии) и лёгочных заболеваний, а также иммунодефицита [1][3][4][5][6].
Нарушение иммунологической реактивности, лежащее в основе развития тяжёлых форм новой коронавирусной инфекции, может быть первичным (генетически обусловленным) либо вторичным – приобретённым вследствие воздействия на организм человека негативных факторов химической, физической и биологической природы. В перечень возбудителей, способствующих возникновению иммунодефицитных состояний вторичного характера, входят в первую очередь вирусы иммунодефицита человека (ВИЧ), герпеса (human herpesvirus, HHV), вирусы гепатитов В (hepatitis B virus, HBV) и С (hepatitis C virus, HCV) и др. [7–10]. Длительная персистенция перечисленных микроорганизмов создаёт основу для наслоения на имеющийся инфекционный процесс вызванной SARS-CoV-2 новой коронавирусной инфекции. Это может привести к синергизму вследствие транскриптомно-протеомного сходства инфектов, определяющего единые патогенетические механизмы взаимодействия с организмом хозяина. Так, проведённые исследования выявили пептидное (иммуноэпитопное) родство протеинов нового коронавируса с белками других агентов – в частности, вирусов Эпштейна–Барр (Epstein–Barr virus, EBV) (Herpesviridae: Lymphocryptovirus, HHV-4), простого герпеса 1 типа (HSV-1, или HHV-1), гриппа А (H1N1), ВИЧ, а также Streptococcus pneumoniae, Pseudomonas aeruginosa и Staphylococcus aureus. Сделан вывод о том, что именно эти патогены на фоне сочетания с COVID-19 способны усугублять её течение за счёт общих патогенетических точек приложения [11–13].
В то же время в доступной литературе практически отсутствуют сведения об эпидемиологии коинфекций, вызванных SARS-CoV-2 совместно с другими патогенами. Особую актуальность в этой связи представляет микст-инфекция с EBV, который имеет убиквитарное распространение, а маркёры хронической EBV-инфекции выявляются более чем у 90% населения планеты [14]. Важно отметить, что экспансия нового коронавируса в Российской Федерации, включая столичный регион (г. Москва и Московская область), пришлась на максимально высокие за весь период наблюдения многолетние уровни заболеваемости инфекционным мононуклеозом и совпала по времени с её сезонным подъёмом [2][15][16].
Целью настоящего исследования стало изучение эпидемиологических особенностей активной EBV-инфекции на фоне COVID-19.
Материал и методы
В период с марта по май 2020 г. проведено поперечное рандомизированное исследование, в которое вошли лица обоего пола, постоянно проживающие на территории г. Москвы и Московской области, в возрасте от 18 до 60 лет, предоставившие письменное добровольное информированное согласие на выполнение соответствующих обследований. Сформированы 2 группы, сопоставимые между собой по полу и возрасту. В первую (пациенты) включены 95 человек, находившихся в стационаре с целью лечения новой коронавирусной инфекции, у которых ретроспективно были выявлены антитела (АТ) класса IgG к SARS-CoV-2. Вторую группу (доноры крови) составили 92 участника, допущенные до донации по результатам лабораторно-инструментального и клинического обследования в соответствии с требованиями действующих нормативных правовых актов.
Группа пациентов дополнительно разделена на три подгруппы:
- 1-я – 30 человек с лёгкой формой болезни (острый назофарингит), у которых в мазке из носоглотки обнаружена РНК SARS-CoV-2;
- 2-я – 29 больных со среднетяжёлым течением (интерстициальная пневмония без дыхательной недостаточности) и фоне детекции нуклеиновой кислоты SARS-CoV-2;
- 3-я – 36 участников со среднетяжёлым течением (интерстициальная пневмония без дыхательной недостаточности) с отрицательными результатами определения генетического материала нового коронавируса в мазке из носоглотки.
Лицам из 1-й и 2-й групп выполнены стандартное клиническое и биохимическое исследование крови, результаты которого у пациентов оценивались на момент поступления в стационар (на 3-и–7-е сут от первых клинических проявлений), а также определение маркёров HBV-, HCV- и ВИЧ-инфекций. У всех включённых в протокол указанные маркёры не обнаружены.
Наличие пневмонии в группе пациентов устанавливали по результатам многослойной (мультиспиральной) компьютерной томографии, дыхательной недостаточности – по насыщению (сатурации) артериальной крови кислородом, которая у всех исследуемых превышала 95%.
Все участники обследованы на наличие:
- РНК SARS-CoV-2 в мазке из носоглотки;
- ДНК EBV в сыворотке крови;
- АТ класса IgМ к капсидному (viral capsid antigen, VCA) антигену EBV (IgM VCA);
- АТ класса IgG к VCA, раннему (early antigen, ЕА) и ядерному (Epstein–Barr nuclear antigen, EBNA) антигенам EBV.
Кроме того, дополнительно проведено исследование авидности АТ IgG к VCA.
Каждый пациент обследован на наличие РНК SARS-CoV-2 в мазке из носоглотки не менее 2 раз: до начала стационарного лечения и спустя 10–14 сут. При выявлении РНК SARS-CoV-2 на фоне клинической симптоматики исследуемый рассматривался как больной с лабораторно подтверждённой новой коронавирусной инфекцией (код по МКБ-10 – U07.1 Коронавирусная инфекция CОVID-19, вирус идентифицирован). В случае отсутствия генетического материала, но при наличии характерных для данной нозологии клинических проявлений устанавливался диагноз «коронавирусная инфекция CОVID-19, вирус не идентифицирован» (U07.2 по МКБ-10).
Обследование на маркёры активности инфекционного процесса, вызванного EBV, выполняли на 10–21-е сут от момента появления первых клинических симптомов. Присутствие анти-EBNA АТ класса IgG в сыворотке крови указывало на наличие паст-инфекции. При выявлении на фоне наличия АТ IgG к EBNA также и низкоавидных анти-VCA АТ IgG (индекс авидности <60%) состояние расценивалось как ранняя паст-инфекция. В случаях обнаружения ДНК EBV, АТ IgM к VCA, АТ IgG к EA либо их сочетания на фоне наличия/отсутствия анти-EBNA АТ IgG констатировалась активная EBV-инфекция (острая или реактивация).
Детекцию генетического материала вирусов методикой полимеразной цепной реакции с обратной транскрипцией (ОТ-ПЦР) в режиме реального времени осуществляли с помощью следующих комплектов реагентов в соответствии с протоколами производителей:
- набор для выявления РНК SARS-CoV-2 методом ОТ-ПЦР в режиме реального времени «РеалБест РНК SARS-CoV-2» («Вектор-Бест», Россия);
- набор для выявления и количественного определения ДНК EBV «АмплиСенс EBV-скрин/монитор-FL» (ФБУН «ЦНИИ эпидемиологии» Роспотребнадзора, Россия).
Для обнаружения специфических АТ классов IgM и IgG к EBV методом иммуноферментного анализа (ИФА) использовали соответствующие комплекты реагентов согласно инструкциям производителей («Вектор-Бест»).
Концентрацию АТ IgG к VCA и EBNA оценивали по коэффициенту позитивности (КП), представляющему собой отношение оптической плотности исследуемого образца к аналогичной критической величине.
Статистическую обработку результатов проводили с использованием таблиц Microsoft Excel 2019. Рассчитывали частоту выявления маркёров реактивации инфекции, вызванной EBV, и ранней паст-инфекции, средние коэффициенты позитивности АТ IgG к VCA и EBNA, средние уровни активности аланинаминотрансферазы (АЛТ) и содержания билирубина (мкмоль/л) в сыворотке крови (Ед/л), а также среднее значение относительного числа моноцитов в венозной крови (%). Для определения границ доверительных интервалов (ДИ) вычисляли ошибки указанных показателей. Различия считали достоверными при доверительной вероятности 95% и статистической значимости p <0,05.
В целях количественного описания тесноты связи признаков проводили расчёт отношения шансов (ОШ) выявления повышенных значений активности АЛТ (>41 ЕД/л), уровня билирубина (>17 мкмоль/л), относительного числа моноцитов (>10%) и развития пневмонии у пациентов с маркёрами реактивации EBV-инфекции и без них методом четырёхпольной таблицы:
ОШ = A × D/B × C (1),
где А – наличие признака у пациентов с маркёрами реактивации; В – отсутствие признака у пациентов с маркёрами реактивации; С – наличие признака у пациентов без реактивации; D – отсутствие признака у пациентов без реактивации.
Значимость показателя ОШ оценивали путём определения границ 95% ДИ. Различия считали статистически значимыми (p <0,05) в случае, если последний не включал в себя единицу.
Результаты
Частота детекции маркёров ранее перенесённой EBV-инфекции (АТ IgG к EBNA) в исследуемых группах не имела достоверных различий и составила 97,9% (95% ДИ: 95,0–100,8) у пациентов и 95,7% (95% ДИ: 91,5–99,9) среди доноров. Индикаторы ранней EBV-паст-инфекции (низкоавидные АТ IgG к VCA) не выявлены в группе доноров и в подгруппе больных с лёгким течением с наличием РНК SARSCoV-2 в мазке из носоглотки. В целом у пациентов они обнаруживались в 6,3% (95% ДИ: 1,4–11,2) случаев, в том числе среди имевших среднетяжёлое течение с наличием РНК SARS-CoV-2 (3,4%; 95% ДИ: 0,0– 10,1) либо её отсутствием (13,9%; 95% ДИ: 2,4–25,4).
Маркёры активной EBV-инфекции в группе доноров определялись в 10,9% случаев (95% ДИ: 4,5–17,3). Для пациентов эта величина была достоверно выше как в целом (80%; 95% ДИ: 71,9–88,1), так и в каждой из подгрупп (табл. 1). Среди пациентов со среднетяжёлыми формами COVID-19 на фоне наличия РНК SARS-CoV-2 в мазке из носоглотки и её отсутствия межгрупповые показатели частоты обнаружения индикаторов активности EBV-инфекции существенно не отличались, но при этом значимо превышали таковые для больных с лёгким течением. Во всех этих случаях в крови выявлялись также анти-EBNA АТ класса IgG.
Таблица 1. Частота выявления лиц с маркёрами активной EBV-инфекции
Table 1. Frequency of detection of persons with markers of active EBV infection
Примечание. ДИ – доверительный интервал.
Note. CI is a confidence interval.
Обращает на себя внимание тот факт, что из маркёров, указывающих на активную EBV-инфекцию, у доноров достоверно чаще обнаруживался генетический материал этого вируса (9,8%; 95% ДИ: 3,7–15,9) по сравнению
с пациентами (1,1%; 95% ДИ: 0,0–3,2). У последних, в свою очередь, во много раз чаще выявлялись серологические маркёры – АТ IgM к VCA (70,5%; 95% ДИ: 61,3–79,7) и IgG к EA (56,8%; 95% ДИ: 46,8–66,8) по сравнению с донорами – 0,0 и2,2% (95% ДИ: 0,0–5,2) соответственно.
Анализ средних КП анти-VCA и анти-EBNA АТ IgG продемонстрировал, что среди доноров оба этих показателя значимо выше, чем в группе пациентов в целом и во всех её подгруппах. Исключение составляет средний КП анти-EBNA АТ IgG у больных с лёгкими формами на фоне присутствия РНК SARSCoV-2 в мазке из носоглотки, существенно не отличающийся от такового у доноров (табл. 2).
Таблица 2. Средние значения коэффициентов позитивности антител IgG к VCA и EBNA
Table 2. Average values of anti-VCA and anti-EBNA IgG antibodies positivity coefficients
Примечание. ДИ – доверительный интервал.
Note. CI is a confidence interval.
Не выявлено достоверных различий между средними КП анти-VCA и анти-EBNA АТ IgG в группе доноров и в подгруппах больных со среднетяжёлым течением как с наличием, так и с отсутствием РНК SARS-CoV-2 в мазке из носоглотки. Напротив, у пациентов в целом и в подгруппе имеющих лёгкое течение при наличии генетического материала нового коронавируса средний КП анти-VCA АТ IgG оказался значимо ниже аналогичного показателя для EBNA.
Пневмония у пациентов с индикаторами активной EBV-инфекции выявлялась с частотой 81,6% (95% ДИ: 72,8–90,4), а среди не имеющих их – значимо реже (15,8%; 95% ДИ: 0,0–32,6). Значение ОШ составило 23,6, что при 95% ДИ: 6,0–92,3 статистически достоверно.
Анализ средних уровней активности АЛТ в сыворотке крови показал превышение их над стандартными референсными значениями для взрослых (до 41 Ед/л) в группе пациентов – 66,3 Ед/л (95% ДИ: 38,5–94,1) за счёт подгрупп со среднетяжёлым течением при наличии нуклеиновой кислоты SARS-CoV-2 в мазке из носоглотки (43,7 Ед/л) (95% ДИ: 38,0–49,4) и её отсутствии (81,8 Ед/л) (95% ДИ: 44,4–119,2) (табл. 3).
Таблица 3. Средние уровни активности аланинаминотрансферазы, содержания билирубина и относительного числа моноцитов
Table 3. Average levels of alanine aminotransferase, bilirubin and relative number of monocytes
Примечание. ДИ – доверительный интервал.
Note. CI is a confidence interval.
Самая низкая средняя величина активности АЛТ зафиксирована у доноров – 17,5 Ед/л (95% ДИ: 16,1– 18,9), при этом различия с аналогичными показателями группы пациентов и каждой из её подгрупп достоверны (р <0,05). Несмотря на то что среднее значение указанного параметра в подгруппе больных с лёгкими формами на фоне наличия РНК SARS-CoV-2 достоверно превышало таковое у доноров, оно оказалось значимо ниже, чем для имеющих среднетяжёлое течение в случае наличия или отсутствия нуклеиновой кислоты данного вируса. Из 76 пациентов с маркёрами активной EBV-инфекции превышение референсного значения активности этого фермента выявлено у 42, а из 19 больных без них – только у 5. ОШ составило 3,5, что при 95% ДИ: 1,13–10,6 является статистически значимым и свидетельствует о достоверно более высоком шансе превышения референсного значения у пациентов с индикаторами активности вызванной EBV инфекции.
Средний уровень билирубина сыворотки у пациентов (11,1 мкмоль/л) (95% ДИ: 10,1–12,1) в несколько раз превышал значение в группе доноров – 9,5 мкмоль/л (95% ДИ: 8,9–10,1), однако различия в этом случае недостоверны (табл. 3). Не выявлены также статистически значимые отличия между данными показателями в каждой из подгрупп пациентов. Однако в подгруппе со среднетяжёлым течением COVID-19 на фоне наличия РНК SARS-CoV-2 в мазке из носоглотки эта величина составила 12,2 мкмоль/л (95% ДИ: 10,3–14,1), что достоверно выше, нежели в группе доноров. Среди пациентов с маркёрами активной EBV-инфекции повышенные уровни билирубина (>17 мкмоль/л) зарегистрированы у 9 человек, без них – у 2. Шансы обнаружения повышенных показателей содержания билирубина у лиц с индикаторами активности EBV-инфекции и без таковых оказались равными (ОШ = 1,1; 95% ДИ: 0,2–5,8 – ДИ включает единицу; различия недостоверны).
Среднее значение относительного числа моноцитов было наиболее низким среди доноров – 5,4% (95% ДИ: 3,0–7,8) и в подгруппе пациентов с лёгкими формами на фоне присутствия РНК возбудителя COVID-19 в мазке из носоглотки (8,4%) (95% ДИ: 7,0–9,8), при этом различия также недостоверны (табл. 3). Значимо более высокие показатели выявлены среди пациентов в целом (11,2%) (95% ДИ: 10,4–12,0) и у имеющих среднетяжёлое течение как с наличием РНК SARSCoV-2 – 12,3% (95% ДИ: 10,9–13,7), так и с её отсутствием – 12,5% (95% ДИ: 11,3–13,7). Доля лиц с относительным моноцитозом (>10%) была достоверно выше среди пациентов с маркёрами активной EBV-инфекции – 49 человек по сравнению с не имеющими их (3 участника; ОШ = 9,7 (95% ДИ: 2,6–36,2).
Обсуждение
Предшествующая массовому распространению SARS-CoV-2 эпидемиологическая ситуация по инфекции, вызываемой EBV, по всей видимости, способствовала созданию благоприятной основы для развития пандемии, что обусловлено в первую очередь снижением иммунологической реактивности в популяции [17]. Настоящее исследование позволило изучить частоту распространения и проанализировать эпидемиологические особенности активной EBV-инфекции у пациентов с COVID-19.
Так, несмотря на равнозначные уровни серопревалентности EBV по такому показателю, как АТ IgG к EBNA, в группе пациентов достоверно чаще, чем среди условно здоровых лиц (доноры), выявлялись серологические маркёры активной EBV-инфекции. Более частое выявление генетического материала её возбудителя в крови доноров можно объяснить произвольным выбором момента обследования, не сопряжённым с какими-либо клиническими проявлениями болезни. У пациентов же с реактивацией EBV-инфекции имело место предшествовавшее инфицирование SARS-CoV-2, которое, наиболее вероятно, сыграло роль триггера. При этом периода времени от появления первых клинических симптомов заболевания до забора крови (10–21 сут) в группе пациентов было достаточно для исчезновения ДНК EBV и выработки анти-VCA АТ класса IgM и анти-EA АТ IgG. Однако данный срок оказался малым с точки зрения значимого увеличения концентрации АТ класса IgG к VCA и тем более – к EBNA. Именно поэтому средние КП указанных маркёров среди пациентов достоверно меньше, чем у доноров, а средний КП анти-VCA АТ IgG, определённый у пациентов, – значимо ниже аналогичного показателя для АТ IgG к EBNA (в группе доноров различия между указанными показателями недостоверны). Дополнительным подтверждением полученных результатов является выявление отсутствующих у доноров низкоавидных анти-VCA АТ IgG в группе пациентов.
Предположение о том, что наличие SARS-CoV-2 служит благоприятным фоном для EBV-инфекции, подтверждается результатами других исследований. Так, у 18 пациентов, находившихся в отделении интенсивной терапии по поводу тяжёлой COVID-19- ассоциированной пневмонии с дыхательной недостаточностью, на протяжении первых дней болезни в 78% случаев в крови детектирована ДНК EBV. В дальнейшем динамическое обследование не проводилось [18]. В другой работе установлено, что у пациента с EBV-обусловленной лимфомой, имевшего SARS-CoV-2-пневмонию, в разгар последней наблюдалось резкое транзиторное снижение количества плазматических копий ДНК EBV с последующим нарастанием после разрешения пневмонии [19]. Приведённые факты подтверждают важность выбора временно́й точки для обнаружения генетического материала данного вируса в крови пациентов с COVID-19 в период непродолжительной виремии. Тем не менее ни в одном из ранее опубликованных исследований не приводятся сведения о частоте выявления серологических маркёров EBV у больных новой коронавирусной инфекцией.
Кроме того, настоящая работа показала, что более низкие уровни АТ IgG к VCA и EBNA в крови пациентов ассоциированы как с самим фактом SARS-CoV2-инфекции, так и с развитием интерстициальной пневмонии. Существует достаточно доказательств возникновения её при моноинфицировании новым коронавирусом [17][20] или EBV [21][22]. Пептидное сходство данных возбудителей способно инициировать иммунную защиту против одного вируса при развитии острого инфекционного процесса, вызванного другим [11][12]. По всей вероятности, частые реактивации EBV-инфекции, поддерживающие высокие концентрации анти-VCA и анти-EBNA АТ класса IgG, в определённой степени обеспечивают защиту от иных патогенов со сходными белковыми структурами. Напротив, низкие уровни специфических АТ IgG к EBV (КП анти-VCA IgG <34,6 и анти-EBNA IgG <27,4) определяют реактивацию EBV-инфекции при инфицировании новым коронавирусом. Аналогичные взаимодействия были описаны между EBV и вирусом гриппа А: наличие активированных последним большого пула Т-клеток памяти определяло более тяжёлое клиническое течение процесса, вызванного EBV [23]. Ещё в одном исследовании продемонстрировано, что лица молодого возраста с предшествующей острой EBV-инфекцией в 2 раза реже по сравнению с серонегативными к вызывающему её возбудителю переносили острые респираторные заболевания [24].
Полученные результаты свидетельствуют о том, что у включённых в исследование новая коронавирусная инфекция без присутствия EBV протекала преимущественно в лёгкой форме с преобладанием поражения верхних дыхательных путей. Возникновению пневмонии в большинстве случаев способствовало наличие активной EBV-инфекции, подтверждавшейся обнаружением серологических и молекулярно-биологических маркёров. Другими авторами описаны единичные случаи вызванной SARS-CoV-2 и EBV микст-инфекции [18][19][25][26], однако отсутствие надлежащей выборки не позволило проанализировать эпидемиологические особенности активной EBV-инфекции у пациентов с COVID-19 лёгкой и средней степени тяжести, что было сделано нами впервые.
В последнее время в научных публикациях активно обсуждается факт поражения печёночных клеток SARS-CoV-2 [27–29]. Приводятся данные о том, что у пациентов с COVID-19 наличие биохимических признаков поражения гепатоцитов ассоциировано с большей тяжестью течения заболевания [30][31]. Наряду с этим выдвигаются предположения, что картина повреждения печени при новой коронавирусной инфекции не связана с действием её возбудителя [30] и может быть обусловлена побочным эффектом используемых лекарственных препаратов [32][33], либо микст-инфекцией, в частности с участием HBV [28]. Необходимо отметить, что EBV наряду с HBV и HCV также обладает тропностью к печёночной ткани и способен изменять показатели активности АЛТ и содержания билирубина в крови [7][8]. В настоящем исследовании впервые продемонстрировано, что повышение активности этого фермента может быть использовано в качестве критерия, указывающего не только на более тяжёлое клиническое течение болезни, но прежде всего на сочетание наличия SARS-CoV-2 и активной EBV-инфекции. Гипербилирубинемия также указывает на поражение печени, однако этот параметр в данном случае оказался менее специфичным по сравнению с АЛТ. Кроме того, одним из наиболее характерных лабораторных признаков активной EBV-инфекции служит моноцитоз. Относительное увеличение количества моноцитов наряду с повышенным уровнем активности АЛТ должно стать поводом для обследования на маркёры активности EBV-инфекции с целью корректировки тактики ведения больного.
Заключение
Таким образом, достоверно более высокая частота выявления индикаторов активности EBV-инфекции у находившихся на стационарном лечении в связи с COVID-19, особенно у лиц со среднетяжёлым течением последней, указывает на сочетанную роль SARSCoV-2 и EBV в развитии интерстициальной пневмонии.
Полученные в ходе исследования результаты позволяют сделать следующие выводы:
1. Маркёры активной EBV-инфекции выявляются у 80% (95% ДИ: 71,9–88,1) лиц, находящихся на стационарном лечении по поводу SARS-CoV-2, в том числе у 43,3% (95% ДИ: 25,3–61,3) имеющих лёгкое течение с наличием РНК SARS-CoV-2 в мазке из носоглотки, у 96,6% (95% ДИ: 89,9–103,3) пациентов со среднетяжёлыми формами на фоне наличия РНК SARS-CoV-2 и у 97,2% (95% ДИ: 91,8–102,6) – со среднетяжёлым течением в случае отсутствия вирусного генетического материала.
2. У участников исследования вызванная SARSCoV-2 моноинфекция протекала преимущественно в лёгкой форме. Тяжесть клинических проявлений, выражавшуюся в развитии интерстициальной пневмонии, определяло наличие у пациентов с COVID-19 активной EBV-инфекции (ОШ возникновения интерстициальной пневмонии у пациентов с маркёрами активности EBV-инфекции и без них составляет 23,6 (95% ДИ: 6,0–92,3).
3. Инфицирование SARS-CoV-2 является триггером репродукции EBV в клетках хозяина. Наличие низких концентраций специфических АТ класса IgG к белковым структурам EBV (КП анти-VCA АТ IgG <34,6; КП анти-EBNA АТ IgG <27,4) служит предиктором реактивации EBV-инфекции.
4. Превышение референсных значений активности АЛТ и относительного содержания моноцитов у пациентов, находящихся на лечении в стационаре по поводу COVID-19, может быть использовано в качестве критерия, указывающего не только на более тяжёлое клиническое течение заболевания, но в первую очередь на сочетание присутствия SARS-CoV-2 и активной EBV-инфекции и должно служить поводом к обследованию на маркёры последней с целью коррекции тактики ведения пациента.
Об авторах
Т. В. Соломай
Межрегиональное управление № 1 Федерального медико-биологического агентства; ФГБНУ «Научно-исследовательский институт вакцин и сывороток им. И.И. Мечникова»
Автор, ответственный за переписку.
Email: solomay@rambler.ru
ORCID iD: 0000-0002-7040-7653
Соломай Татьяна Валерьевна, кандидат медицинских наук, заместитель руководителя Межрегионального управления №1 ФМБА России; старший научный сотрудник, лаборатория эпидемиологического анализа и мониторинга инфекционных заболеваний, Федеральное государственное бюджетное научное учреждение «Научно-исследовательский институт вакцин и сывороток им. И.И Мечникова» Минобрнауки России. SPIN 7688-1280
123182, Москва
105064, Москва
Т. А. Семененко
ФГБУ «Национальный исследовательский центр эпидемиологии и микробиологии имени почётного академика Н.Ф. Гамалеи» Минздрава России; ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России (Сеченовский Университет)
Email: semenenko@gamaleya.org
ORCID iD: 0000-0002-6686-9011
Семененко Татьяна Анатольевна – доктор медицинских наук, профессор, руководитель отдела эпидемиологии, ФГБУ «Национальный исследовательский центр эпидемиологии и микробиологии имени почетного академика Н.Ф. Гамалеи» Министерства здравоохранения Российской Федерации; профессор кафедры инфектологии и вирусологии ИПО ФГАОУ ВО Первый МГМУ имени И.М. Сеченова Министерства здравоохранения Российской Федерации (Сеченовский университет). SPIN 8375-2270
123098, Москва
119991, Москва
Н. Н. Филатов
ФГБНУ «Научно-исследовательский институт вакцин и сывороток им. И.И. Мечникова»; ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России (Сеченовский Университет)
Email: n.n.filatov@yandex.ru
ORCID iD: 0000-0003-4857-9624
Филатов Николай Николаевич, доктор медицинских наук, профессор, членкорреспондент РАН, заместитель директора по научной работе, Федеральное государственное бюджетное научное учреждение «Научно-исследовательский институт вакцин и сывороток им. И.И Мечникова» Минобрнауки России, заведующий кафедрой эпидемиологии и современных технологий вакцинации ИПО ФГАОУ ВО Первый МГМУ имени И.М. Сеченова Министерства здравоохранения Российской Федерации (Сеченовский университет). SPIN 2582-2741
105064, Москва
119991, Москва
С. Л. Ведунова
ФГБНУ «Научно-исследовательский институт вакцин и сывороток им. И.И. Мечникова»
Email: svetl.vedunova2012@yandex.ru
ORCID iD: 0000-0002-8992-9080
Ведунова Светлана Леонардовна, кандидат биологических наук, ведущий научный сотрудник лаборатории диагностики вирусных инфекций. AuthorID: 286807
105064, Москва
тел. 89636397205
В. Ф. Лавров
ФГБНУ «Научно-исследовательский институт вакцин и сывороток им. И.И. Мечникова»; ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России
Email: v.f.lavrov@inbox.ru
ORCID iD: 0000-0001-7006-506X
Лавров Вячеслав Федорович, доктор медицинских наук, профессор, главный научный сотрудник, заведующий лабораторией диагностики вирусных инфекций,Федеральное государственное бюджетное научное учреждение «Научно-исследовательский институт вакцин и сывороток им. И.И Мечникова» Минобрнауки России; профессор, кафедра эпидемиологии, ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России. AuthorID: 122750
105064, Москва
125993, Москва
тел. (495) 916-22-03
Д. И. Смирнова
ФГБНУ «Научно-исследовательский институт вакцин и сывороток им. И.И. Мечникова»
Email: daria.sm.1995@mail.ru
ORCID iD: 0000-0001-7325-0834
Смирнова Дарья Ильинична, младший научный сотрудник, лаборатория молекулярной вирусологии. SPIN 4311-7491
105064, Москва
РоссияА. В. Грачёва
ФГБНУ «Научно-исследовательский институт вакцин и сывороток им. И.И. Мечникова»
Email: nastuxa_70@mail.ru
ORCID iD: 0000-0001-8428-4482
Грачёва Анастасия Вячеславовна, младший научный сотрудник, лаборатория молекулярной вирусологии. SPIN 6271-3841
105064, Москва
РоссияЕ. Б. Файзулоев
ФГБНУ «Научно-исследовательский институт вакцин и сывороток им. И.И. Мечникова»
Email: faizuloev@mail.ru
ORCID iD: 0000-0001-7385-5083
Файзулоев Евгений Бахтиёрович, кандидат биологических наук, заведующий лабораторией молекулярной вирусологии. SPIN 1908-7720
105064, Москва
РоссияСписок литературы
- Salzberger B., Buder F., Lampl B., Ehrenstein B., Hitzenbichler F., Hanses F. Epidemiology of SARS-CoV-2 infection and COVID-19. Internist (Berl). 2020; 61(8): 782–8. https://doi.org/10.1007/s00108-020-00834-9 (in German).
- Акимкин В.Г., Кузин С.Н., Семененко Т.А., Плоскирева А.А., Дубоделов Д.В., Тиванова Е.В., и др. Гендерно-возрастная характеристика пациентов с COVID-19 на разных этапах эпидемии в Москве. Проблемы особо опасных инфекций. 2020; (3): 27–35. https://doi.org/10.21055/0370-1069-2020-3-27-35.
- Акимкин В.Г., Кузин С.Н., Семененко Т.А., Шипулина О.Ю., Яцышина С.Б., Тиванова Е.В., и др. Закономерности эпидемического распространения SARS-CoV-2 в условиях мегаполиса. Вопросы вирусологии. 2020; 65(4): 203–11. https://doi.org/10.36233/0507-4088-2020-65-4-203-211.
- Xiong Y., Sun D., Liu Y., Fan Y., Zhao L., Li X., et al. Clinical and high-resolution CT features of the COVID-19 infection: comparison of the initial and follow-up changes. Invest. Radiol. 2020; 55(6): 332–9. https://doi.org/10.1097/RLI.0000000000000674.
- Zhao D., Yao F., Wang L., Zheng L., Gao Y., Ye J., et al. A comparative study on the clinical features of COVID-19 pneumonia to other pneumonias. Clin. Infect. Dis. 2020; 71(15): 756–61. https://doi.org/10.1093/cid/ciaa247.
- Коган Е.А., Березовский Ю.С., Проценко Д.Д., Багдасарян Т.Р., Грецов Е.М., Демура С.А., и др. Патологическая анатомия инфекции, вызванной SARS-CoV-2. Судебная медицина. 2020; 6(2): 8–30. https://doi.org/10.19048/2411-8729-2020-6-2-8-30.
- Соломай Т.В., Семененко Т.А., Иванова М.Ю. Роль Эпштейна–Барр вирусной инфекции и гепатитов В и С в патологии печени. Вопросы вирусологии. 2019; 64(5): 215–20. https://doi.org/10.36233/0507-4088-2019-64-5-215-220.
- Соломай Т.В., Семененко Т.А. Вирусные гепатиты В, С и инфекционный мононуклеоз: эпидемиологическое сходство и различия. Вопросы вирусологии. 2020; 65(1): 27–34. https://doi.org/10.36233/0507-4088-2020-65-1-27-34.
- Na I.K., Buckland M., Agostini C., Edgar J.D.M., Friman V., Michallet M., et al. Current clinical practice and challenges in the management of secondary immunodeficiency in hematological malignancies. Eur. J. Haematol. 2019; 102(6): 447–56. https://doi.org/10.1111/ejh.13223.
- Chinen J., Shearer W.T. Secondary immunodeficiencies, including HIV infection. J. Allergy Clin. Immunol. 2010; 125(2 Suppl. 2): 195–203. https://doi.org/10.1016/j.jaci.2009.08.040.
- Харченко Е.П. Коронавирус SARS-Cov-2: сложности патогенеза, поиски вакцин и будущие пандемии. Эпидемиология и Вакцинопрофилактика. 2020; 19(3): 4–20. https://doi.org/10.31631/2073-3046-2020-19-3-4-20.
- Vavougios G.D. Overlapping host pathways between SARS-CoV-2 and its potential copathogens: An in silico analysis. Infect. Genet. Evol. 2020; 86: 104602. https://doi.org/10.1016/j.meegid.2020.104602.
- Nieto-Moro M., Ecclesia F.G., Tomé-Masa I., De Lama Caro-Patón G., Leoz-Gordillo I., Cabrero-Hernández M., et al. SARS-CoV-2 and Streptococcus pneumoniae coinfection as a cause of severe pneumonia in an infant. Pediatr. Pulmonol. 2020; 55(9): 2198–200. https://doi.org/10.1002/ppul.24916.
- Соломай Т.В., Семененко Т.А., Каражас Н.В., Рыбалкина Т.Н., Корниенко М.Н., Бошьян Р.Е., и др. Оценка риска инфицирования герпесвирусами при переливании донорской крови и её компонентов. Анализ риска здоровью. 2020; (2): 135–42. https://doi.org/10.21668/health.risk/2020.2.15.eng.
- Соломай Т.В. Многолетняя динамика заболеваемости и территориальное распространение инфекционного мононуклеоза. Здравоохранение Российской Федерации. 2019; 63(4): 186–92. https://doi.org/10.18821/0044-197X-2019-63-4-186-192.
- Соломай Т.В., Филатов Н.Н. Сезонность инфекции, вызванной вирусом Эпштейна–Барр. Журнал инфектологии. 2020; 12(4): 93–100. https://doi.org/10.22625/2072-6732-2020-12-4-93-100.
- Taylor G.S., Long H.M., Brooks J.M., Rickinson A.B., Hislop A.D. The immunology of Epstein–Barr virus-induced disease. Annu. Rev. Immunol. 2015; 33: 787–821. https://doi.org/10.1146/annurev-immunol-032414-112326.
- Lehner G.F., Klein S.J., Zoller H., Peer A., Bellmann R., Joannidis M. Correlation of interleukin-6 with Epstein–Barr virus levels in COVID-19. Crit. Care. 2020; 24(1): 657. https://doi.org/10.1186/s13054-020-03384-6.
- Pasin F., Mascalchi Calveri M., Calabrese A., Pizzarelli G., Bongiovanni I., Andreoli M., et al. Oncolytic effect of SARS-CoV2 in a patient with NK lymphoma. Acta Biomed. 2020; 91(3): e2020047. https://doi.org/10.23750/abm.v91i3.10141.
- Liya G., Yuguang W., Jian L., Huaiping Y., Xue H., Jianwei H., et al. Studies on viral pneumonia related to novel coronavirus SARSCoV-2, SARS-CoV, and MERS-CoV: a literature review. APMIS. 2020; 128(6): 423–32. https://doi.org/10.1111/apm.13047.
- Guenther J.F., Cameron J.E., Nguyen H.T., Wang Y., Sullivan D.E., Shan B., et al. Modulation of lung inflammation by the Epstein–Barr virus protein Zta. Am. J. Physiol. Lung Cell. Mol. Physiol. 2010; 299(6): L771–84. https://doi.org/10.1152/ajplung.00408.2009.
- Tachikawa R., Tomii K., Seo R., Nagata K., Otsuka K., Nakagawa A., et al. Detection of herpes viruses by multiplex and real-time polymerase chain reaction in bronchoalveolar lavage fluid of patients with acute lung injury or acute respiratory distress syndrome. Respiration. 2014; 87(4): 279–86. https://doi.org/10.1159/000355200.
- Aslan N., Watkin L.B., Gil A., Mishra R., Clark F.G., Welsh R.M., et al. Severity of acute infectious mononucleosis correlates with cross-reactive influenza CD8 T-cell receptor repertoires. mBio. 2017; 8(6): e01841-17. https://doi.org/10.1128/mBio.01841-17.
- He C.-S., Handzlik M., Muhamad A., Gleeson M. Influence of CMV/EBV serostatus on respiratory infection incidence during 4 months of winter training in a student cohort of endurance athletes. Eur. J. Appl. Physiol. 2013; 113(10): 2613–9. https://doi.org/10.1007/s00421-013-2704-x.
- Morand A., Roquelaure B., Colson P., Amrane S., Bosdure E., Raoult D., et al. Child with liver transplant recovers from COVID-19 infection. A case report. Arch. Pediatr. 2020; 27(5): 275–6. https://doi.org/10.1016/j.arcped.2020.05.004.
- García-Martínez F.J., Moreno-Artero E., Jahnke S. SARS-CoV-2 and EBV coinfection. Med. Clin. (Barc.). 2020; 155(7): 319–20. https://doi.org/10.1016/j.medcle.2020.06.010.
- Wang Y., Liu S., Liu H., Li W., Lin F., Jiang L., et al. SARS-CoV-2 infection of the liver directly contributes to hepatic impairment in patients with COVID-19. J. Hepatol. 2020; 73(4): 807–16. https://doi.org/10.1016/j.jhep.2020.05.002.
- Zou X., Fang M., Li S., Wu L., Gao B., Gao H., et al. Characteristics of liver function in patients with SARS-CoV-2 and chronic HBV coinfection. Clin. Gastroenterol. Hepatol. 2021; 19(3): 597–603. https://doi.org/10.1016/j.cgh.2020.06.017.
- Ma Y.L., Xia S.Y., Wang M., Zhang S.M., Du W.H., Chen Q. Clinical features of children with SARS-CoV-2 infection: an analysis of 115 cases. Zhongguo Dang Dai Er Ke Za Zhi [Chinese journal of contemporary pediatrics]. 2020; 22(4): 290–3. https://doi.org/10.7499/j.issn.1008-8830.2003016 (in Chinese).
- Anastasiou O.E., Korth J., Herbstreit F., Witzke O., Lange C.M. Mild versus severe liver injury in SARS-CoV-2 infection. Dig. Dis. 2021; 39: 52–7. https://doi.org/10.1159/000510758.
- Ponziani F.R., Del Zompo F., Nesci A., Santopaolo F., Ianiro G., Pompili M., et al. “Gemelli against COVID-19” group. Liver involvement is not associated with mortality: results from a large cohort of SARS-CoV-2-positive patients. Aliment. Pharmacol. Ther. 2020; 52(6): 1060–8. https://doi.org/10.1111/apt.15996.
- Gendrot M., Andreani J., Boxberger M., Jardot P., Fonta I., Le Bideau M., et al. Antimalarial drugs inhibit the replication of SARSCoV-2: An in vitro evaluation. Travel Med. Infect. Dis. 2020; 37: 101873. https://doi.org/10.1016/j.tmaid.2020.101873.
- Doyno C., Sobieraj D.M., Baker W.L. Toxicity of chloroquine and hydroxychloroquine following therapeutic use or overdose. Clin. Toxicol. (Phila). 2020; 59(1): 12–23. https://doi.org/10.1080/15563650.2020.1817479.