ИСПОЛЬЗОВАНИЕ МОНОКЛОНАЛЬНЫХ АНТИТЕЛ ДЛЯ ЛЕЧЕНИЯ ЗАБОЛЕВАНИЯ, ВЫЗВАННОГО ВИРУСОМ ЭБОЛА
- Авторы: Сизикова Т.Е.1, Борисевич Г.В.1, Щебляков Д.В.2, Бурмистрова Д.А.2, Лебедев В.Н.1
-
Учреждения:
- ФГБУ «48 Центральный НИИ» Минобороны России
- ФГБУ «Национальный исследовательский центр эпидемиологии и микробиологии имени почётного академика Н.Ф. Гамалеи» Минздрава России
- Выпуск: Том 63, № 6 (2018)
- Страницы: 245-249
- Раздел: ОБЗОРЫ
- Дата подачи: 20.01.2020
- Дата публикации: 20.12.2018
- URL: https://virusjour.crie.ru/jour/article/view/220
- DOI: https://doi.org/10.18821/0507-4088-2018-63-6-245-249
- ID: 220
Цитировать
Полный текст
Аннотация
Изучен ряд препаратов, рассматриваемых в качестве кандидатов для лечения заболевания, вызванного вирусом Эбола, из них наибольшим терапевтическим потенциалом обладают смеси моноклональных антител (МКАт). Преимущества использования МКАт заключаются в низкой токсичности, высокой специфичности и универсальности. Диапазон биологического действия МКАт зависит от Fc-фрагмента антител. Свойства МКАт включают опсонизацию патогена, активацию комплемента, антителозависимую клеточную цитотоксичность и вируснейтрализующие характеристики. Наиболее известной смесью МКАт, используемой для лечения, является ZMapр, производимая фирмой «Leaf Biopharmaceutical» с 2004 г. В статье рассмотрены разработанные смеси МКАт, их структура и свойства, защитная эффективность и создание новых видов МКАт, специфичных для всех представителей рода Еbolavirus.
Ключевые слова
Об авторах
Т. Е. Сизикова
ФГБУ «48 Центральный НИИ» Минобороны России
Автор, ответственный за переписку.
Email: noemail@neicon.ru
Россия
Г. В. Борисевич
ФГБУ «48 Центральный НИИ» Минобороны России
Email: 48cnii@mil.ru
Россия
Д. В. Щебляков
ФГБУ «Национальный исследовательский центр эпидемиологии и микробиологии имени почётного академика Н.Ф. Гамалеи» Минздрава России
Email: noemail@neicon.ru
Россия
Д. А. Бурмистрова
ФГБУ «Национальный исследовательский центр эпидемиологии и микробиологии имени почётного академика Н.Ф. Гамалеи» Минздрава России
Email: noemail@neicon.ru
Россия
В. Н. Лебедев
ФГБУ «48 Центральный НИИ» Минобороны России
Email: noemail@neicon.ru
Россия
Список литературы
- Feldmann H., Geisbert T.W. Ebola haemorrhagic fever. Lancet. 2011; 377(9768): 849-62. doi: 10.1016/S0140-6736(10)60667-8
- Sanchez A., Geisbert T.W., Feldmann H. Filoviridae: Marburg and Ebola Viruses. In: Knipe D.M., Howley P.M., eds. Fields Virology. Philadelphia, PA: Lippincott Williams and Wilkins; 2006: 1279-304.
- Albarino C.G., Shoemaker T., Khristova M.L., Wamala J.F., Muyembe J.J., Balinandi S., et al. Genomic analysis of filoviruses associated with four viral hemorrhagic fever outbreaks in Uganda and the Democratic Republic of the Congo in 2012. Virology. 2013; 442(2): 97-100. doi: 10.1016/j.virol.2013.04.014
- Volchkov V.E., Feldmann H., Volchkova V.A., Klenk H.D. Processing of Ebola virus glycoprotein be polyprotein convertase furin. Proc. Nate Acad. Sci. USA Microbiology. 1998; 95(10): 5762-7.
- Lee J.E., Fusco M.L., Hessell A.J., Oswald W.B., Burton D.R., Saphire E.O. Structure of Ebola virus glycoprotein bound to an antibody from a human survivor. Nature. 2008; 454(7201): 177-82. doi: 10.1038/nature07082.
- Lee J.E., Saphire E.O. Ebolavirus glycoprotein structure and mechanism of entry. Future Virol. 2009; 4(6): 621-35. doi: 10.1038/nature07082
- Wool-Lewis R.J., Bates P. Characterization of Ebola virus entry by using pseudotyped viruses: identification of receptor-deficient cell lines. J. Virol. 1998; 72(4): 3155-60.
- Warfield K.L., Swenson D.L., Olinger G.G., Olinger G.G., Nichols D.K., Pratt W.D., et al. Gene-specific countermeasures against Ebola virus based on antisense phosphorodiamidate morpholino oligomers. PLoS Pathog. 2006; 2(1): 5-13. doi: 10.1371/journal.ppat.0020001
- Geisbert T.W., Geisbert T.W., Hensley L.E., Jahrling P.B., Larsen T., Geisbert J.B., et al. Treatment of Ebola virus infection with a recombinant inhibitor of factor VIIa tissue factor: a study in rhesus monkeys. Lancet. 2003; 362(9400): 1953-8. doi: 10.1016/s0140-6736(03)15012-x
- Hensley L.E., Stewens E.L., Yan S.B., Geisbert J.B., Macias W.L., Larsen T., et al. Recombinant human activated protein C for the postexposure treatment of Ebola hemorrhagic fever. J. Infect. Dis. 2007; 196(2): 390-9. doi: 10.1086/520598
- Madelain V., Nguyen T.H., Olivo A., de Lamballerie X., Guedj J., Taburet A.M., et al. Ebola Virus Infection: Review of the Pharmacokinetic and Pharmacodynamic Properties of Drugs Considered for Testing in Human Efficacy Trials. Clin. Pharmacokinet. 2016; 55(8): 907-23. doi: 10.1007/s40262-015-0364-1
- Olszanecki R., Gawlik G. Pharmacotherapy of Ebola hemorrhagic fever: a brief review of current status and future perspectives. Folia Med. Cracov. 2014; 54(3): 67-77.
- Sayburn A. WHO gives go ahead for experimental treatments to be used in Ebola outbreak. BMJ. 2014; 349: 1. doi: 10.1136/bmj.g5161
- Geisbert T.W., Lee A.C.H., Robbins M., Geisbert J.B., Honko A.N., Sood V., et al. Postexposure protection of non-human primates against a lethal Ebola virus challenge with RNA interference: a proof-of-concept study. Lancet. 2010; 375(9729): 1896-905. doi: 10.1016/S0140-6736(10)60357-1
- Qiu X., Wong G., Audet J., Bello A., Fernando L., Alimonti J.B., et al. Reversion of advanced Ebola virus disease in nonhuman primates with ZMapp. Nature. 2014; 514(7520): 47-53. doi: 10.1038/nature13777
- Choi W.Y., Hong K.J., Hong J.E., Lee W.J. Progress of vaccine and drug development for Ebola preparedness. Clin. Exp. Vaccine Res. 2015; 4(1): 11-6. doi: 10.7774/cevr.2015.4.1.11
- Murin C.D., Fusco M.L., Bornholdt Z.A., Qiu X., Olinger G.G., Zeitlin L., et al. Structures of protective antibodies reveal sites of vulnerability on Ebola virus. Proc Natl. Acad. Sci. USA. 2014; 111(48): 17182-7. doi: 10.1073/pnas.1414164111
- Na W., Park N., Yeom M., Song D. Ebola outbreak in Western Africa 2014: what is going on with Ebola virus? Clin. Exp. Vaccine Res. 2015; 4(1): 17-22. doi: 10.7774/cevr.2015.4.1.17
- Pettitt J., Zeitlin L., Kim do H., Working C., Johnson J.C., Bohorov O., et al. Therapeutic intervention of Ebola virus infection in rhesus macaques with the MB-003 monoclonal antibody cocktail. Sci. Transl. Med. 2013; 5(199): 1-6. doi: 10.1126/scitranslmed.3006608
- Olinger G.G., Pettitt J., Kim D., Working C., Bohorov O., Bratcher B., et al. Delayed treatment of Ebola virus infection with plant-derived monoclonal antibodies provides protection in rhesus macaques. Proc. Natl. Acad. Sci. USA. 2012; 109(44): 18030-5. doi: 10.1073/pnas.1213709109
- Davidson E., Bryan C., Fong R.H., Barnes T., Pfaff J.M., Mabila M., et al. Mechanism of Binding to Ebola Virus Glycoprotein by the ZMapp, ZMAb, and MB-003 Cocktail Antibodies. J. Virol. 2015; 89 (21): 10982-92. doi: 10.1128/jvi.01490-15
- Kugelman J.R., Kugelman-Tonos J., Ladner J.T., Pettit J., Keeton C.M., Nagle E.R., et al. Emergence of Ebola Virus Escape Variants in Infected Nonhuman Primates Treated with the MB-003 Antibody Cocktail. Cell. Rep. 2015; 12(12): 2111-20. doi: 10.1016/j.celrep.2015.08.038
- Wilson J.A., Hewey M., Bakken R., Guest S., Bray M., Schmaljohn A.L., et al. Epitopes involved in antibody-mediated protection from Ebola virus. Science. 2000; 287(5458): 1664-6.
- Yang Z.Y., Duckers H.J., Sullivan N.J., Sanchez A., Nabel E.G., Nabel G.J. Identification of the Ebola virus glycoprotein as main viral determinant of vascular cell cytotoxicity and injury. Nat. Med. 2000; 6(8): 886-9. doi: 10.1038/78645
- Jones J.D. Leishmania tarentolae: an alternative approach to the production of monoclonal antibodies to treat emerging viral infections. Infect. Dis. Poverty. 2015; 4(8): 1-5. doi: 10.1186/2049-9957-4-8
- Zhang Y., Li D., Jin X., Huang Z. Fighting Ebola with ZMapp: spotlight on plant-made antibody. Sci. China Life Sci. 2014; 57(10): 987-8. doi: 10.1007/s11427-014-4746-7
- Furuyama W., Marzi A., Nanbo A., Haddock E., Maruyama J., Miyamoto H., et al. Discovery of an antibody for pan-ebolavirus therapy. Sci. Rep. 2016; 6(20514): 1-10. doi: 10.1038/srep20514
- Holtsberg F.W., Shulenin S., Vu H., Howell K.A., Patel S.J., Gunn B., et al. Pan-ebolavirus and Pan-filovirus Mouse Monoclonal Antibodies: Protection against Ebola and Sudan Viruses. J. Virol. 2015; 90(1): 266-78. doi: 10.1128/jvi.02171-15
- McCarthy M. US signs contract with ZMapp maker to accelerate development of the Ebola drug. BMJ. 2014; 349: 5488. doi: 10.1136/bmj.g5488
- WHO. Ebola situation report - 8 July 2015. Available at: http://apps.who.int/iris/bitstream/handle/10665/179196/roadmapsitrep_8Jul2015_eng.pdf
- Goodman J.L. Studing “secret serums”-toward safe, effective Ebola treatments. N. Engl. J. Med. 2014; 371(12):1086-9. doi: 10.1056/nejmp1409817
- Lyon G.M., Mehta A.K., Varkey J.B., Brantly K., Plyler L., McElroy A.K., et al. Clinical Care of Two Patients with Ebola Virus Disease in the United States. N. Engl. J. Med. 2014; 371(25): 2402-9. doi: 10.1056/nejmoa1409838
- Feldmann H., Geisbert T.W. Ebola haemorrhagic fever. Lancet. 2011; 377(9768): 849-62. doi: 10.1016/S0140-6736(10)60667-8
- Sanchez A., Geisbert T.W., Feldmann H. Filoviridae: Marburg and Ebola Viruses. In: Knipe D.M., Howley P.M., eds. Fields Virology. Philadelphia, PA: Lippincott Williams and Wilkins; 2006: 1279-304.
- Albarino C.G., Shoemaker T., Khristova M.L., Wamala J.F., Muyembe J.J., Balinandi S., et al. Genomic analysis of filoviruses associated with four viral hemorrhagic fever outbreaks in Uganda and the Democratic Republic of the Congo in 2012. Virology. 2013; 442(2): 97-100. doi: 10.1016/j.virol.2013.04.014
- Volchkov V.E., Feldmann H., Volchkova V.A., Klenk H.D. Processing of Ebola virus glycoprotein be polyprotein convertase furin. Proc. Nate Acad. Sci. USA Microbiology. 1998; 95(10): 5762-7.
- Lee J.E., Fusco M.L., Hessell A.J., Oswald W.B., Burton D.R., Saphire E.O. Structure of Ebola virus glycoprotein bound to an antibody from a human survivor. Nature. 2008; 454(7201): 177-82. doi: 10.1038/nature07082.
- Lee J.E., Saphire E.O. Ebolavirus glycoprotein structure and mechanism of entry. Future Virol. 2009; 4(6): 621-35. doi: 10.1038/nature07082
- Wool-Lewis R.J., Bates P. Characterization of Ebola virus entry by using pseudotyped viruses: identification of receptor-deficient cell lines. J. Virol. 1998; 72(4): 3155-60.
- Warfield K.L., Swenson D.L., Olinger G.G., Olinger G.G., Nichols D.K., Pratt W.D., et al. Gene-specific countermeasures against Ebola virus based on antisense phosphorodiamidate morpholino oligomers. PLoS Pathog. 2006; 2(1): 5-13. doi: 10.1371/journal.ppat.0020001
- Geisbert T.W., Geisbert T.W., Hensley L.E., Jahrling P.B., Larsen T., Geisbert J.B., et al. Treatment of Ebola virus infection with a recombinant inhibitor of factor VIIa tissue factor: a study in rhesus monkeys. Lancet. 2003; 362(9400): 1953-8. doi: 10.1016/s0140-6736(03)15012-x
- Hensley L.E., Stewens E.L., Yan S.B., Geisbert J.B., Macias W.L., Larsen T., et al. Recombinant human activated protein C for the postexposure treatment of Ebola hemorrhagic fever. J. Infect. Dis. 2007; 196(2): 390-9. doi: 10.1086/520598
- Madelain V., Nguyen T.H., Olivo A., de Lamballerie X., Guedj J., Taburet A.M., et al. Ebola Virus Infection: Review of the Pharmacokinetic and Pharmacodynamic Properties of Drugs Considered for Testing in Human Efficacy Trials. Clin. Pharmacokinet. 2016; 55(8): 907-23. doi: 10.1007/s40262-015-0364-1
- Olszanecki R., Gawlik G. Pharmacotherapy of Ebola hemorrhagic fever: a brief review of current status and future perspectives. Folia Med. Cracov. 2014; 54(3): 67-77.
- Sayburn A. WHO gives go ahead for experimental treatments to be used in Ebola outbreak. BMJ. 2014; 349: 1. doi: 10.1136/bmj.g5161
- Geisbert T.W., Lee A.C.H., Robbins M., Geisbert J.B., Honko A.N., Sood V., et al. Postexposure protection of non-human primates against a lethal Ebola virus challenge with RNA interference: a proof-of-concept study. Lancet. 2010; 375(9729): 1896-905. doi: 10.1016/S0140-6736(10)60357-1
- Qiu X., Wong G., Audet J., Bello A., Fernando L., Alimonti J.B., et al. Reversion of advanced Ebola virus disease in nonhuman primates with ZMapp. Nature. 2014; 514(7520): 47-53. doi: 10.1038/nature13777
- Choi W.Y., Hong K.J., Hong J.E., Lee W.J. Progress of vaccine and drug development for Ebola preparedness. Clin. Exp. Vaccine Res. 2015; 4(1): 11-6. doi: 10.7774/cevr.2015.4.1.11
- Murin C.D., Fusco M.L., Bornholdt Z.A., Qiu X., Olinger G.G., Zeitlin L., et al. Structures of protective antibodies reveal sites of vulnerability on Ebola virus. Proc Natl. Acad. Sci. USA. 2014; 111(48): 17182-7. doi: 10.1073/pnas.1414164111
- Na W., Park N., Yeom M., Song D. Ebola outbreak in Western Africa 2014: what is going on with Ebola virus? Clin. Exp. Vaccine Res. 2015; 4(1): 17-22. doi: 10.7774/cevr.2015.4.1.17
- Pettitt J., Zeitlin L., Kim do H., Working C., Johnson J.C., Bohorov O., et al. Therapeutic intervention of Ebola virus infection in rhesus macaques with the MB-003 monoclonal antibody cocktail. Sci. Transl. Med. 2013; 5(199): 1-6. doi: 10.1126/scitranslmed.3006608
- Olinger G.G., Pettitt J., Kim D., Working C., Bohorov O., Bratcher B., et al. Delayed treatment of Ebola virus infection with plant-derived monoclonal antibodies provides protection in rhesus macaques. Proc. Natl. Acad. Sci. USA. 2012; 109(44): 18030-5. doi: 10.1073/pnas.1213709109
- Davidson E., Bryan C., Fong R.H., Barnes T., Pfaff J.M., Mabila M., et al. Mechanism of Binding to Ebola Virus Glycoprotein by the ZMapp, ZMAb, and MB-003 Cocktail Antibodies. J. Virol. 2015; 89 (21): 10982-92. doi: 10.1128/jvi.01490-15
- Kugelman J.R., Kugelman-Tonos J., Ladner J.T., Pettit J., Keeton C.M., Nagle E.R., et al. Emergence of Ebola Virus Escape Variants in Infected Nonhuman Primates Treated with the MB-003 Antibody Cocktail. Cell. Rep. 2015; 12(12): 2111-20. doi: 10.1016/j.celrep.2015.08.038
- Wilson J.A., Hewey M., Bakken R., Guest S., Bray M., Schmaljohn A.L., et al. Epitopes involved in antibody-mediated protection from Ebola virus. Science. 2000; 287(5458): 1664-6.
- Yang Z.Y., Duckers H.J., Sullivan N.J., Sanchez A., Nabel E.G., Nabel G.J. Identification of the Ebola virus glycoprotein as main viral determinant of vascular cell cytotoxicity and injury. Nat. Med. 2000; 6(8): 886-9. doi: 10.1038/78645
- Jones J.D. Leishmania tarentolae: an alternative approach to the production of monoclonal antibodies to treat emerging viral infections. Infect. Dis. Poverty. 2015; 4(8): 1-5. doi: 10.1186/2049-9957-4-8
- Zhang Y., Li D., Jin X., Huang Z. Fighting Ebola with ZMapp: spotlight on plant-made antibody. Sci. China Life Sci. 2014; 57(10): 987-8. doi: 10.1007/s11427-014-4746-7
- Furuyama W., Marzi A., Nanbo A., Haddock E., Maruyama J., Miyamoto H., et al. Discovery of an antibody for pan-ebolavirus therapy. Sci. Rep. 2016; 6(20514): 1-10. doi: 10.1038/srep20514
- Holtsberg F.W., Shulenin S., Vu H., Howell K.A., Patel S.J., Gunn B., et al. Pan-ebolavirus and Pan-filovirus Mouse Monoclonal Antibodies: Protection against Ebola and Sudan Viruses. J. Virol. 2015; 90(1): 266-78. doi: 10.1128/jvi.02171-15
- McCarthy M. US signs contract with ZMapp maker to accelerate development of the Ebola drug. BMJ. 2014; 349: 5488. doi: 10.1136/bmj.g5488
- WHO. Ebola situation report - 8 July 2015. Available at: http://apps.who.int/iris/bitstream/handle/10665/179196/roadmapsitrep_8Jul2015_eng.pdf
- Goodman J.L. Studing “secret serums”-toward safe, effective Ebola treatments. N. Engl. J. Med. 2014; 371(12):1086-9. doi: 10.1056/nejmp1409817
- Lyon G.M., Mehta A.K., Varkey J.B., Brantly K., Plyler L., McElroy A.K., et al. Clinical Care of Two Patients with Ebola Virus Disease in the United States. N. Engl. J. Med. 2014; 371(25): 2402-9. doi: 10.1056/nejmoa1409838