Сравнительный анализ иммунного ответа на ДНК-конструкции, кодирующие неструктурные белки вируса гепатита С
- Выпуск: Том 58, № 2 (2013)
- Страницы: 21-28
- Раздел: Статьи
- Дата подачи: 09.06.2023
- Дата публикации: 15.04.2013
- URL: https://virusjour.crie.ru/jour/article/view/12206
- ID: 12206
Цитировать
Полный текст
Аннотация
Перспективный подход к конструированию противовирусных вакцин состоит в активации клеточного звена иммунитета с помощью ДНК-вакцин. Цель работы - изучение эффективности генетической иммунизации мышей ДНК-конструкцией pcNS3-NS5B, одновременно кодирующей 5 неструктурных белков вируса гепатита С (ВГС) - NS3, NS4A, NS4B, NS5A и NS5B - в сравнении с плазмидами, содержащими гены индивидуальных неструктурных белков NS3, NS4, NS5A и NS5B ВГС. Мышей линии DBA иммунизировали ДНК-конструкциями трехкратно. Гуморальный иммунный ответ оценивали в иммуноферментном анализе (ИФА), клеточный - по количественному анализу уровня пролиферации Т-лимфоцитов методом проточной цитометрии и в реакции бласттрансформации лимфоцитов, по синтезу и секреции цитокинов ИФН-Y и ИЛ-2 методами ELISpot и ИФА. Установлено, что по большинству изученных параметров иммунный ответ на плазмиду pcNS3-NS5B был выше, чем на плазмиды, кодирующие отдельные белки. Так, достигнут функционально активный Т-клеточный ответ одновременно на антигены, представляющие эпитопы белков NS3, NS4, NS5A и NS5B ВГС разных генотипов. Показан высокий уровень пролиферации CD4+ -Т-клеток, секреция ИЛ-2 и ИФН-y, индукция антител изотипа IgG2a к белкам NS3 и NS5B. Полученные результаты свидетельствуют о возможности создания эффективной вакцины против гепатита С на основе ДНК-конструкции pcNS3-NS5B.
Ключевые слова
Полный текст
Вакцина против вируса гепатита С (ВГС) до настоящего времени не создана. Сложность разработки вакцины заключается в гетерогенности ВГС, его высокой мутабельности и интерференции вирусных белков с иммунным ответом хозяина. Исследование больных с разрешившимся гепатитом С и хрониза-цией инфекции показало, что основным благоприятным фактором является ранний, сильный и мульти-специфический клеточный ответ на белки ВГС [21]. Большинство исследователей признают важность цитотоксических CD8+-Т-клеток (ЦТЛ) в контроле виремии при остром гепатите С. Установлена зависимость этого эффекта от функционально активных Т-хелперных (Th) CD4+-клеток, с потерей которых связывают рецидивы виремии [22]. Показано, что ДНК-вакцинация, когда в организм вводятся бактериальные плазмиды со встроенными генами вирусных белков, экспрессирующимися in vivo, способна стимулировать ответ TM-типа с образованием антивирусных ЦТЛ. Особого внимания в качестве компонентов вакцин заслуживают неструктурные белки ВГС, образующие репликативный комплекс, так как Контактная информация: Масалова Ольга Владимировна, д-р биол. наук; e-mail: ol.mas@mail.ru 21 они содержат консервативные иммунодоминантные эпитопы, ассоциированные с выздоровлением [24]. Исследования показали, что в репликации ВГС участвует связанный с мембраной эндоплазматического ретикулума (ЭР) мультисубъединичный комплекс, состоящий из одной молекулы минус-РНК, 2-10 молекул плюс-РНК и нескольких сотен молекул каждого из неструктурных белков вируса, которые функционально и структурно взаимосвязаны [18]. Перестройку мембран ЭР с образованием "мембранных сетей", на которых формируется репликативный комплекс, индуцирует NS4B. Белок NS3 является сериновой протеиназой и хеликазой/АТФ-азой, NS4A-кофактором сериновой протеиназы, NS5B -РНК-зависимой РНК-полимеразой. NS5A представляет собой регулятор многих клеточных процессов и репродукции вируса [16]. К настоящему времени на модели лабораторных животных исследована иммуногенность более 40 разнообразных ДНК-конструкций, кодирующих отдельные белки ВГС [12, 19, 23]. Однако показано, что при использовании генов индивидуальных неструктурных белков их экспрессия наблюдается не в везикулах "мембранных сетей", а в цитозоле (кроме NS4B) [16, 18]. A priori нельзя исключить, что не только локализация в разных компартментах клетки, но и конформация тех же белков в составе репликативного комплекса различаются. Можно предположить, что включение в состав вакцины комплекса всех или большинства неструктурных белков ВГС повысит эффективность иммунного ответа за счет адекватной внутриклеточной экспрессии и процессинга белков с образованием нативной пространственной структуры и более полного представления антигенных эпитопов имму-нокомпетентным клеткам. Цель работы - изучение эффективности генетической иммунизации мышей ДНК-конструкцией, одновременно кодирующей 5 неструктурных белков ВГС - NS3, NS4A, NS4B, NS5A и NS5B - в сравнении с ДНК-вакцинами, содержащими гены индивидуальных неструктурных белков ВГС. Материалы и методы ДНК-конструкции. Для экспрессии в эукариотических клетках на основе вектора pcDNA3.1(+) ("Invitrogen", США) создана плазмида, кодирующая фрагмент полипротеина NS3-NS5B. В качестве источника NS3-NS5B-кодирующей ДНК использовали плазмиду pFK I389 PI-luc-ubi-neo/NS3-3’/ET, любезно предоставленную проф. R. Bartenschlager (Германия). Данная плазмида кодирует субгеномный геном ВГС генотипа 1b (изолят Con1, Acc N AJ238799). Клонирование осуществляли в две стадии. На первом этапе при помощи специфических олигонуклеотидов ам-плифицировали область генома ВГС, соответствующую участку от начала белка NS3 до середины белка NS5A (сайт EcoRI), и клонировали ДНК-продукт в вектор pcDNA3.1(+) по сайтам HindIII и EcoRI. В структуру олигонуклеотида NS3-For была введена последовательность Kozak, кодирующая остаток метионина и обеспечивающая эффективную инициацию трансляции. Второй фрагмент генома ВГС, кодирующий оставшуюся часть белка NS5A и белок NS5B, амплифицировали при помощи другой пары олигонуклеотидов и клонировали в плазмиду, полученную в предыдущей стадии, по сайтам EcoRI и XbaI. Нуклеотидная последовательность полученной плазмиды pcNS3-NS5B была подтверждена флюоресцентным секвенированием. ДНК-конструкции, кодирующие одиночные неструктурные белки ВГС, в частности полноразмерные неструктурные белки NS3 (pcNS3), NS4A и NS4B (pcNS4), NS5A (pcNS5A) и NS5B (pcNS5B), описаны ранее [2, 3, 5, 14]. Для препаративного выделения и очистки плазмид из культуры бактерий E. coli (штамм XL-1 blue) использовали щелочной метод [1], для аналитического - набор "Qiagen Inc." (США). Трансфекция. Для изучения способности плазмиды pcNS3-NS5B экспрессировать гены ВГС в клетках млекопитающих использовали линию клеток гепато-карциномы человека Huh7. Культивирование клеток и их трансфекцию с использованием липосомного агента Lipofectamine 2000 ("Invitrogen", США) проводили Рис. 1. Схематичное изображение исследованных рекомбинантных белков и пептидов, имитирующих последовательности неструктурных белков ВГС. Горизонтальная шкала показывает положение аминокислотных остатков (а. о.), соответствующих белкам NS3, NS4, NS5A и NS5B в полипротеине ВГС (1027-3011 а. о.). Стрелками показано положение рекомбинантных белков и пептидов, использованных в данной работе. 22 в соответствии с указаниями, приведенными в работе [2]. Анализ трансфицированных клонов выполняли с помощью непрямого иммунопероксидазного окрашивания [2] с использованием 8 оригинальных МКА к белкам NS3, NS4A, NS4B и NS5A, полученных и охарактеризованных ранее [7], коммерческих МКА к белку NS5B (sc-58146, "Santa Cruz Biotechnology", США), поликлональной сыворотки, полученной при иммунизации кролика рекомбинантным белком NS5B. Результаты иммуноцитохимического окрашивания оценивали с помощью светового микроскопа Opton (Германия). Рекомбинантные белки (r) и пептиды (p) ВГС использовали как антигены для стимуляции Т-клеточных реакций in vitro, а также как сорбенты в иммунофер-ментном анализе (ИФА) для оценки продукции антител (рис. 1). Пептиды генотипа 1b из аминокислотной последовательности ^.о.) белков NS3 (позиции 1104-1123, 1203-1222, 1363-1454, 1447-1466 а. о.), NS4 (1689-1712, 1689-1738, 1693-1707, 1921-1940 а. о.) и NS5A (2163-2171, 2295-2317 а. о.) получены из Института биоорганической химии им. М.М. Шемякина и Ю.А. Овчинникова РАН. Использованы рекомбинантные белки ВГС: core (1-90 а. о.), NS3 (про-теазный домен 1027-1229 а. о., хеликазный домен 1230-1658 а. о., генотип 1b, иммунодоминантные регионы 1192-1459 и 1356-1459 а. о., генотипы 1а и 1b соответственно), NS4 (1677-1754 а. о. и мозаичный белок NS4 mosaic, содержащий участки 1691-1710, 1712-1733, 1921-1940 а. о. из генотипов 1, 2, 3 и 5), NS5A (2061-2302 и 2212-2313 а. о., генотипы 1b и 2a соответственно), NS5B (2420-3011 а. о., генотип 1b). Получение и аффинная очистка белков описаны ранее [5, 8, 13]. Иммунизация мышей. Для иммунизации использовали самок мышей линии DBA/2J (H-2d) в возрасте 6-8 нед, полученных из Центрального питомника лабораторных животных "Крюково" РАМН. Каждая группа состояла из 8-10 животных. Мышам контрольной группы (группа 1) вводили физиологический раствор трехкратно с 3-недельным интервалом в четырехглавую мышцу бедра задних лап. Очищенные плазмиды pcNS3-NS5B (группа 2), pcNS3 (группа 3), pcNS4 (группа 4), pcNS5A (группа 5) и pcNS5B (группа 6) вводили в те же сроки в дозе 100 мкг/мышь совместно с адъювантом - плазмидой, кодирующей гранулоцитарно-макрофагальный колониестимулирующий фактор мышей (pcGM-CSF), 100 мкг/мышь. Иммунный ответ оценивали через 9 дней после второй и третьей иммунизаций. Оценка иммунного ответа. Гуморальный ответ. Активность взаимодействия антител к белкам ВГС в сыворотках крови мышей с антигенами ВГС определяли методом непрямого ИФА. 96-луночные планшеты сенсибилизировали рекомбинантными белками и пептидами в фосфатно-солевом буфере в концентрации 1 и 5 мкг/мл соответственно. В качестве вторичных антител использовали антитела к иммуноглобулинам мыши изотипов IgG1 и IgG2a, конъюгированные с пероксидазой хрена ("Jackson Immunoresearch Laboratories", США), в качестве субстрата пероксидазы - тетраметилбензидин ("Sigma", США); оптическую плотность измеряли при 450 нм. За титр сывороток в ИФА принимали предельное разведение сыворотки крови, при котором значение оптической плотности при А в 2 раза превышало значение для контрольного образца (сыворотка крови неиммунизированных мышей). Т-клеточный ответ in vitro оценивали в реакции бласттрансформации лимфоцитов (РБТЛ), методом проточной цитометрии по количественному учету пролиферации лимфоцитов разных популяций, по секреции цитокинов ИФН-у и ИЛ-2, а также методом ELISpot. Клетки селезенки от мышей каждой экспериментальной группы объединяли и выделяли фракцию мононуклеарных клеток, как описано в работе [2]. Для стимуляции спленоцитов in vitro использовали рекомбинантные белки в конечных концентрациях 0,2 и 1 мкг/мл и пептиды - 2 и 10 мкг/мл (каждая концентрация взята в двух повторах, данные усредняли). Положительным контролем служили культуры спле-ноцитов, активированные конканавалином А (conA; 5 мкг/мл). В качестве отрицательных контролей использовали: нестимулированные клеточные культуры из селезенок мышей; культуры, стимулированные неспецифическим антигеном - рекомбинантным белком core ВГС; клеточные культуры из селезенок мышей контрольной группы. РБТЛ выполняли, как описано ранее [2]. Индекс стимуляции пролиферации (ИСП) рассчитывали как отношение среднего количества лимфобластов в ответ на специфические антигены к среднему количеству лимфобластов в лунках с культуральной средой и контрольным антигеном (core ВГС). Пролиферацию CD4+- и CD8+ -Т-клеток in vitro оценивали методом проточной цитометрии по "разведению" внутриклеточного красителя Cell Trace Violet (CellTrace™ Violet Cell Proliferation Kit; "Invitrogen", США) согласно протоколу фирмы-производителя. Клетки инкубировали в концентрации 3 млн в 1 мл в течение 4 сут в присутствии стимуляторов, окрашивали антителами к поверхностным маркерам anti-CD4 PerCP-Cy 5.5 ("BD Biosciences", США) и anti-CD8a Alexa Fluor 700 ("BioLegend", США); процент поделившихся Т-клеток подсчитывали по снижению флюоресценции красителя Cell Trace Violet с помощью проточного цитометра FACS Aria II и программы FACS Diva 6 ("BD Biosciences", США). Результаты выражали как ИСП. Измерение концентрации цитокинов в культуральных жидкостях, полученных через 2,5 сут после стимуляции лимфоцитов, проводили методом ИФА с помощью наборов для определения ИФН-у и ИЛ-2 ("Mabtech", Швеция) в соответствии с рекомендациями фирмы. Концентрацию цитокинов определяли по калибровочным кривым стандартных образцов. Предел чувствительности для ИФН-у составлял 3 пг/мл, для ИЛ-2 - 5 пг/мл. Определение ИФН-у- и ИЛ-2-секретирующих клеток методом ELISpot. Количество клеток, секре-тирующих цитокины, определяли c помощью тест-системы "Dual-Color ELISpot Mouse IFN-y/IL-2 Kit" ("R&D systems", США). Изолированные спленоциты (~5 -105 клеток в лунке) инкубировали с иммобилизованными на 96-луночных планшетах антителами к ИФН-у и ИЛ-2 мыши в присутствии стимуляторов в течение 2,5 сут при 37°С в атмосфере 5% СО2. Окрашивание клеток проводили в соответствии с инструкцией. Окрашенные пятна (spots) детектировали визуально с помощью стереоскопического микроскопа 23 МБС-10 ("ЛОМЗ", Россия). Результаты выражали в количестве пятен на 106 клеток. Статистическую обработку результатов проводили с использованием программы Statistica 6. Достоверность различий оценивали по t-критерию Стью-дента; различия считали статистически значимыми прир < 0,05. Результаты Визуализация белков ВГС в трансфицированных клетках. С помощью МКА подтверждена экспрессия белков NS3, NS4A, NS4B и NS5A в клетках Huh7 (рис. 2, см. 2-ю полосу обложки). Локализация окраски была цитоплазматической, различались количество окрашенных клеток (от 10 до 80%) и интенсивность окраски при использовании разных МКА. Наиболее активно выявлялись белок NS3 с помощью МКА 5G2, 4H8 и 5B2, белок NS4B - МКА 6В11 и белок NS5A - МКА 1С5. Белок NS5B коммерческими МКА выявить не удалось. Применение поликлональной анти-NS5B-сыворотки кролика было более эффективным, окрашивалось перинуклеарное пространство клеток. Окраска белков ВГС в контрольных образцах (тран-фицированные клетки, обработанные МКА к белку core ВГС, и интактные клетки, окрашенные МКА к неструктурным белкам ВГС) отсутствовала. Таким образом, иммуноцитохимическим методом показано, что плазмида pcNS3-NS5B функциональна и способна экспрессировать все изученные белки ВГС в клетках млекопитающих. Гуморальный иммунный ответ. В сыворотках мышей после второй иммунизации специфические антитела не обнаружены. Титры антител с различными антигенами ВГС в ИФА после третьей иммунизации представлены в табл.1. Установлено, что ДНК-вакцины индуцировали антитела исключительно изотипа IgG2a. При сравнении титров антител в группах 2 (pcNS3-NS5B) и 3 (pcNS3) показано, что антитела, взаимодействующие с рекомбинантным белком NS3 1356-1459 а. о. и протяженным пептидом сходного состава NS3 1363-1454 а. о. в титрах 1:800-1:1000, образовались только в группе 2. Взаимодействие с тремя 20-членными пептидами было незначительным (ИФА-титры 1:20). В группе 3 реактивность антител с исследованными антигенами NS3 была слабой - титры не превышали 1:100. При сравнении групп 2 (pcNS3-NS5B) и 4 (pcNS4) по взаимодействию сывороточных антител с антигенами из состава белка NS4 обнаружена обратная ситуация: более активно реагирующие антитела индуцировало введение мышам pcNS4 по сравнению с pcNS3-NS5B. В группах 2 (pcNS3-NS5B) и 5 (pcNS5А) антитела к белку №5А индуцировались в одинаково невысоких титрах (1:100), тогда как продукция антител к белку NS5B была высокой (титры в ИФА 1:1000 - 1:3000) в группах 2 (pcNS3-NS5B) и 6 ^Ш5В). Клеточный иммунный ответ. Результаты РБТЛ показали, что после двух иммунизаций мышей плазмидами, содержащими гены неструктурных белков ВГС, все испытанные антигены ВГС (кроме NS5B) стимулировали in vitro образование лимфобластов в группе 2 (pcNS3-NS5B), тогда как в остальных группах - только единичные антигены (табл. 2). Проте-азный домен NS3 вызывал активную пролиферацию лимфоцитов в группах 2 и 3, отмечено формирование лимфобластов также в контрольной группе. После третьей иммунизации в группе 2 выявлен пролиферативный ответ на все использованные антигены; количество лимфобластов увеличилось в группах 2 и 3 в ответ на протеазный домен NS3, в группах 2 и 5 -на №5А 2061-2302 а. о. и, напротив, уменьшилось в группах 2 и 4 в ответ на NS4 1677-1756 а. о. (результаты не представлены). Методом проточной цитометрии установлено, что клетки селезенки мышей, дважды иммунизированных плазмидами, отвечают пролиферацией на стимуляцию in vitro различными антигенами ВГС (см. табл. 2). В частности, пролиферация CD4+-Т-клеток мышей группы 2 (pcNS3-NS5B) индуцировалась в ответ на стимуляцию антигенами NS3, NS4, NS5A и NS5B. При этом наиболее активный ответ CD4+-Т-клеток вызывали ^3-хеликазный фрагмент 1230-1658 а. о., Таблица 1 Индукция антител изотипа IgG2a к белкам ВГС у мышей, иммунизированных ДНК-конструкциями, содержащими неструктурные белки ВГС Белок ВГС Антиген для сорбции в ИФА, по Группа 1 - Группа 2 - Группа 3 - Группа 4 - Группа 5 - Группа 6 следовательность а. о., генотип 1b контроль pcNS3- NS5B pcNS3 pcNS4 pcNS5A pcNS5B NS3 rNS3_1356-1459 0 1000 100 0 0 0 pNS3_1363-1454 0 800 0 0 0 0 pNS3_1104-1123 0 20 50 0 0 0 pNS3_1203-1222 0 20 0 0 0 0 pNS3_1447-1466 0 20 0 0 0 0 NS4 rNS4_1677-1756 0 100 0 2500 0 0 pNS4_1689-1738 0 40 0 100 0 0 pNS4_1689-1712 0 40 0 20 0 0 pNS4_1921-1940 0 20 0 20 0 0 NS5A rNS5A_2212-2313 0 100 0 0 100 0 pNS5A_2295-2317 0 100 0 0 100 0 NS5ß rNS5B_2420-3011 0 1000 0 0 0 3000 Примечание < 1:20. . Представлены титры антител к соответствующим антигенам в ИФА; r - рекомбинантные белки, p - пептиды; 0 - 24 Таблица 2 Пролиферация лимфоцитов мышей, дважды иммунизированных ДНК-конструкциями, индуцированная антигенами in vitro Антигены, использованные для реактивации Т-клеток in vitro Группа живот ных Плазмиды, ис- Пролифера ция лимфоцитов NS3 NS4 NS5 пользованные для иммунизации in vivo NS3 1192-1459 а. о. (1а ) ^3-протеаза 1027-1229 а. о. (1b) ^3-хеликаза 1230-1658 а. о. (1b) NS4 1677-1756 а. о. (1b) NS4 mosaic (1, 2, 3, 5) ^5А 2061-2302 а. о. (1b) NS5A 22122313 а. о. (2a) NS5B 2420-3011 а. о. (1b) 1 Контроль (физио логический раствор) Бласты CD4+ CD8+ 0,7 * 1.3 4.3 8,6 6,1 6,6 0,4 0,6 8,2 1,5 8,2 6,3 0,4 4.3 7.3 0,7 0,8 0,8 0,4 1,9 4,8 0,5 4.5 6.6 2 pcNS3- NS5B Бласты 2,4 80,2 1,8 4,8 3,0 2,1 2,0 0,8 CD4+ 2,8 10,5 6,8 22,4 5,7 1,7 6,5 11,0 CD8+ 0,9 3,8 3,3 32,1 6,4 1,7 8,4 4,4 3 pcNS3 Бласты 1,4 51,4 1,4 н/и н/и н/и н/и н/и CD4+ 3,3 4,0 1,6 н/и н/и н/и н/и н/и CD8+ 5,8 0,8 1,3 н/и н/и н/и н/и н/и 4 pcNS4 Бласты н/и н/и н/и 3,0 0,7 н/и н/и н/и CD4+ н/и н/и н/и 15,7 4,6 н/и н/и н/и CD8+ н/и н/и н/и 45,9 2,1 н/и н/и н/и 5 pcNS5A Бласты н/и н/и н/и н/и н/и 1,0 1,8 н/и CD4+ н/и н/и н/и н/и н/и 1,8 1,9 н/и CD8+ н/и н/и н/и н/и н/и 2,0 1,0 н/и 6 pcNS5B Бласты н/и н/и н/и н/и н/и н/и н/и 2,5 CD4+ н/и н/и н/и н/и н/и н/и н/и 6,5 CD8+ н/и н/и н/и н/и н/и н/и н/и 10,1 Примечание. Представлены значения ИСП; выделены значения ИСП, статистически значимо (р < 0,05) отличающиеся от значений в контрольной группе; н/и - не исследовали. Пролиферацию лимфоцитов, индуцированную антигенами in vitro, оценивали по количеству лимфобластов в РБТЛ (бласты) и проценту CD4+- и CD8+-Т-клеток методом проточной цитометрии. NS4 1677-1756 а. о. и NS5A 2212-2313 а. о. Клетки селезенки мышей в группах 3, 4 и 5, иммунизированных плазмидами pcNS3, pcNS4 или pcNS5A соответственно, реагировали пролиферацией CD4+-Т-клеток в ответ на стимуляцию антигеном, ген которого был использован для иммунизации, но с меньшей интенсивностью по сравнению с ответом на те же антигены в группе 2 (см. табл. 2). В группе 6 ^^5В) пролиферация CD4+-Т-клеток в ответ на стимуляцию белком NS5B не выявлена. Спленоциты мышей группы 2, иммунизированных плазмидой pcNS3-NS5B, реагировали пролиферацией CD8+-Т-клеток при реактивации in vitro антигенами NS4 1677-1756 а. о. и двумя антигенами из области белка NS5A (см. табл. 2). CD8+-T-клетки мышей, иммунизированных плазмидой pcNS3, не показали достоверную пролиферативную реакцию на стимуляцию антигенами NS3. Иммунизация мышей плазмидами pcNS4, pcNS5A и pcNS5B вызывала накопление в селезенке CD8+-T-клеток, пролиферирующих в ответ на стимуляцию in vitro соответственно антигенами NS4, NS5A и NS5B. Наиболее интенсивная пролиферация CD8+-T-клеток была зарегистрирована после иммунизации плазмидой pcNS4 и стимуляции in vitro антигеном NS4 1677-1756 а. о. Изучение уровня цитокинов, вырабатываемых спле-ноцитами дважды иммунизированных мышей в ответ на стимуляцию антигенами ВГС in vitro, показало, что секрецию ИЛ-2 вызывали только 4 из 8 использованных антигенов: протеазный домен NS3 в группах 2 и 3 (15-20 пг/мл), NS3 1192-1459 а. о. - в группе 2 (7 пг/мл), NS5A 2061-2302 а. о. в группах 2 и 5 (9пг/мл)иЫ S5B2420-3011 а. о. вгруппе6(11 пг/мл). Секреция ИФН-у не обнаружена. После третьей иммунизации мышей секреция ИЛ-2 получена в ответ на 9 из 10 использованных антигенов, из них на 7 (3 из состава NS5A, 2 - из NS3, 1 - из NS4, 1 - из NS5B, концентрация 9-20 пг/мл) - только у мышей группы 2 (pcNS3-NS5B) (рис. 3, а). Эквивалентные количества ИЛ-2 (30-40 пг/мл) секретировались в группах 2 и 3 (pcNS3) при стимуляции протеазным доменом NS3. На пептид из последовательности белка №4А 1693-1707 а. о. ИЛ-2 вырабатывался только у мышей группы 4 (pcNS4). Девять из 10 стимуляторов вызывали секрецию ИФН-у (рис. 3, б). В ответ на 2 антигена из состава NS3, на 1 - из NS5A и на 1 - из NS5B этот ци-токин вырабатывался в сходных количествах (до 5 пг/мл) спленоцитами мышей, иммунизированных плазмидами pcNS3-NS5B и pcNS3, pcNS5A и pcNS5B соответственно. Незначительные количества ИФН-у (около 3 пг/мл) вырабатывались при стимуляции клеток антигенами NS4, причем только в группе 4, вакцинированной pcNS4. Наибольшая концентрация ИФН-у (более 30 пг/мл) отмечена в группе 2 при стимуляции спленоцитов протеазным доменом NS3. При анализе результатов ELISpot установлено (рис. 4), что все антигены стимулировали нако- 25 451 403530252015105- NS3 11921459 (1а) NS3- NS3-протеаза хеликаза NS4 1677 1754 NS4- NS4- NS5A- NS5A NS5A- NS5Bmosaic р1693- 2061- 2212- р2163- 24201707 2302 2313 (2а) 2171 3011 35-, 30 25 20 15 10 5- NS3 NS3- NS3- NS4 NS4- NS4- 1192- протеаза хеликаза 1677- mosaic р1693- 1459 (1а) 1754 1707 NS5A- NS5A 2061- 22122302 2313 (2а) NS5Aр2163- 2171 NS5B- 2420 3011 Группа 1 Группа 2 О Группа 3 Г руппа 4 Г руппа 5 Группа 6 Рис. 3. Секреция цитокинов ИЛ-2 (а) и ИФН-y (б) спленоцитами мышей, иммунизированных ДНК- конструкциями. По оси абсцисс - антигены ВГС для стимуляции клеток in vitro; по оси ординат-концентрация цитокинов в культуральной среде, пг/мл. 300-, 250 200 150 100 50- NS3 NS3-1192- протеаза 1459 (1а) Щ Г руппа 1 NS4 NS4- NS4- 1677- mosaic р1693- 1754 1707 ^ Группа 2 Q Группа 3 NS5A- NS5A 2061- 22122302 2313 (2а) Щ Г руппа 4 NS5A- NS5B-р2163- 24202171 3011 сопА Г руппа 5 Г руппа 6 Рис. 4. Формирование ИФН-у-секретирующих клеток в культуре спленоцитов мышей, иммунизированных ДНК-конструкциями. По оси абсцисс - антигены для стимуляции клеток in vitro; по оси ординат - количество «спотов» на 106 клеток. Горизонтальная линия показывает фоновый уровень реакции ELISpot. пление ИФН-у-секретирующих лимфоцитов у иммунизированных мышей, за исключением рекомбинантного белка NS3 1192-1459 а. о. в группе 2 и пептида NS5A 2163-2171 а. о. в группе 4. Количество клеток значительно различалось. Наблюдалось более интенсивное образование ИФН-у-секретирующих клеток в группе 2 по сравнению с группой 5 в ответ на все использованные антигены NS5A, а также по сравнению с группой 3 в ответ на протеазный домен NS3 (р < 0,05). Напротив, число ИФН-у-секретирующих лимфоцитов в группе 2 было меньше при стимуляции клеток антигенами NS4 (группа 4) и NS5B (группа 6). Наиболее активная стимуляция, сравнимая с действием conA, получена в ответ на следующие антигены: протеазный домен NS3, пептид NS4 1693-1707 а. о., nS4 mosaic и ^5А 2212-2313 а. о. Что касается 26 ИЛ-2-секретирующих клеток, то они были выявлены только в 3 случаях: в группах 2 и 3 в ответ на про-теазный домен NS3 (5 и 25 клеток соответственно) и в группе 4 в ответ на рекомбинантный белок NS4 1677-1754 а. о. (5 клеток). Обсуждение Основной предпосылкой для проведения данной работы явилось предположение о большей эффективности ДНК-иммунизации конструкцией, кодирующей неструктурные белки NS3, NS4A, NS4B, NS5A и NS5B в одной открытой рамке считывания. Эта плазмида содержит полный набор генов белков ВГС, необходимых для образования репликативного комплекса на мембранах ЭР. Иммуноцитохимическое окрашивание клеток гепатокарциномы человека, трансфицированных плазмидой pcNS3-NS5B, подтвердило экспрессию белков ВГС. Обнаружены значительные различия в количестве клеток, окрашенных антителами разной эпитопной специфичности. Это может объясняться различной экспонированностью антигенных детерминант на поверхности белков. При трансфекции клеток плазмидой pcNS3-NS5B белок NS3 обнаружен только в цитоплазме, тогда как при трансфекции плазмидой pcNS3 - в цитоплазме и ядре [3]. Подобную локализацию белка NS3 в зависимости от коэкспрес-сии с NS4A отмечали и ранее [16, 18]. МКА, наиболее эффективно выявляющие белки ВГС в трансфицированных плазмидой pcNS3-NS5B клетках (^3-5В2, NS4-6B11, NS5A-1C5), активно реагировали с белками ВГС также в клетках печени больных гепатитом С [4]. Полученные результаты показали, что синтезируемые в комплексе белки имеют адекватный фолдинг, способствующий экспрессии иммуногенных детерминант, в том числе конформационно-зависимых. Гены NS3-NS5B ВГС в составе различных рекомбинантных бактериальных и вирусных экспрессионных векторов ранее успешно апробировались для индукции клеточного ответа [9, 10, 17]. Однако сравнение иммунного ответа на эти конструкции и на конструкции, кодирующие отдельные белки, не проводилось. Кроме того, гуморальный ответ не исследовали. В настоящей работе В- и Т-клеточный иммунный ответ мышей на ДНК-вакцины оценивали по комплексу параметров. Показано, что вводимые гены индуцировали антитела изотипа IgG2a, но не IgG1. Этот результат указывает на активацию Th1 звена иммунного ответа, который важен для элиминации вируса. В группе 2 антитела в титрах 1:100 - 1:1000 вырабатывались на все белки ВГС, гены которых кодирует плазмида pcNS3-NS5B. При этом протяженная плазмида индуцировала антитела к белку NS3 в большем количестве, к NS4 - в меньшем, к NS5A и NS5B - в том же количестве, что и соответствующие "короткие" плазмиды. Полученные данные согласуются с наблюдением, свидетельствующим о том, что включение гена NS4A в состав ДНК-вакцин значительно повышает экспрессию и иммуногенность NS3 [19]. Примечательно, что при естественном инфекционном процессе индукцию антител к NS3 связывают с благоприятным прогнозом, тогда как к NS4 - с тяжелым течением гепатита С [6]. Клеточный ответ характеризовали по пролиферации лимфоцитов и их функциональной активности - секреции и внутриклеточному содержанию цитокинов. Результаты РБТЛ свидетельствуют о специфическом ответе на антигены ВГС во всех группах иммунизированных мышей, при этом интенсивность ответа на белки NS3, NS4 и NS5A после второй иммунизации была выше в группе 2, чем в группах 3, 4 и 5 соответственно. ИСП в целом совпадали с ранее полученными данными при исследовании ДНК-вакцин NS3 и NS5A [2, 3, 15]. Количественный анализ пролиферации лимфоцитов с помощью проточной цитометрии позволил уточнить популяционный состав клеток, делящихся при стимуляции антигенами ВГС. Оказалось, что в группе 2 (pcNS3-NS5B) уровень пролиферации CD4+-Т-клеток был статистически значимо выше, чем в группах 3 (pcNS3), 4 (pcNS4), 5 (pcNS5A) и 6 (pcNS5B). Этот результат очень важен, так как показано, что пролиферация функционально активных CD4+-Т-клеток является определяющим фактором в выздоровлении после острого гепатита С [21]. Пролиферацию CD8+-Т-клеток, активируемых CD4+-Th1-клетками, наиболее значимо стимулировали антигены из области белков NS4 и NS5A в группах 2, 4 и 5. Активированные Т-клетки СD4+ и CD8+ способны синтезировать провоспалительные цитокины, такие, как ИФН-у, ИЛ-2, ФНОа и др., необходимые для элиминации вируса. Секреция цитокинов достоверно увеличивалась после третьей иммунизации мышей плазмидами. Примечательно, что ИЛ-2 секретирова-ли преимущественно лимфоциты мышей группы 2. ИЛ-2 играет ключевую роль в индукции эффекторных и регуляторных Т-клеток. Показано, что экзогенный ИЛ-2, добавленный в культуру лимфоцитов больных хроническим гепатитом С, восстанавливает способность CD4+- и CD8+-Т-клеток к пролиферации и синтезу ИФН-у [11]. Потеря способности Т-клетками секретировать ИЛ-2 может вести к нарушению ИФН-у-секреторной и пролиферативной функций in vivo [20]. Секреция ИФН-у в концентрации 3-5 пг/мл обнаружена при стимуляции спленоцитов разными антигенами ВГС, однако значительно большее количество цитокина (> 30 пг/мл) вырабатывалось в ответ на протеазный домен NS3 только в группе 2. Результаты ELISpot и ИФА по синтезу и секреции ИФН-у достаточно хорошо совпадали и дополняли друг друга, тогда как ИЛ-2-секретирующие клетки выявлены в небольшом количестве (< 25) всего в трех группах (2, 3 и 4). Возможно, это связано с разной динамикой синтеза этих цитокинов или с недостаточной чувствительностью ELISpot для определения ИЛ-2. Для большинства антигенов интенсивность пролиферации Т-клеток и выработка цитокинов коррелировали. Эти антигены представлены разными регионами ВГС: протеазным доменом NS3 1027-1229 а. о., с которым в ряде случаев связывают клиренс гепатита С [22, 24], рекомбинантным белком, имитирующим им-мунодоминантный участок белка NS5A 2061-2302 а. о. Однако прямая зависимость между пролиферацией и продукцией цитокинов не выявлена. Например, синтез и секреция цитокинов лимфоцитами мышей в ответ на антиген NS4 1677-1756 а. о. были слабыми, несмотря на активную пролиферативную реакцию Т-клеток. Возможно, это связано с недостаточным количеством функционально активных лимфоцитов, праймированных данным регионом ВГС. Немаловажно, что часть антигенов NS3, NS4 и NS5A, содержащих последовательности не-1Ь-генотипов, стимулировали клеточный ответ преимущественно в группе 27 2. При сравнении эффективности плазмид необходимо учитывать, что мыши группы 2 в итоге получили меньшее количество ДНК каждого гена по сравнению с группами 3-6, так как всем мышам вводили одинаковое количество плазмид - по 100 мкг. Суммируя полученные результаты, можно заключить, что по большинству изученных параметров иммунный ответ на плазмиду, содержащую комбинацию генов 5 неструктурных белков ВГС, был выше, чем на плазмиды, кодирующие отдельные белки. Так, показан высокий уровень пролиферации CD4+-Т-клеток в ответ на антигены NS3, NS4, NS5A и NS5B, а также секреция ИЛ-2 и ИФН-y, индукция антител изотипа IgG2a к белкам NS3 и NS5B. Достигнутый функционально активный Т-клеточный ответ одновременно на множество эпитопов, в том числе на антигены разных генотипов, позволяет характеризовать ДНК-конструкцию pcNS3-NS5B как перспективную основу для создания вакцины. Авторы выражают благодарность д-ру R. Bartenschlager (Германия) за предоставление плазмиды pFK I389 PI-luc-ubi-neo/NS3-3’/ET и Л. Н. Шингаровой (Институт биоорганической химии им. акад. М.М. Шемякина и Ю.А. Овчинникова РАН) - плазмиды pcGM-CSF.×
Список литературы
- Маниатис Т., Фрич Э., Сэмбрук Дж. Методы генетической инженерии. Молекулярное клонирование: Пер. с англ. М.: Мир; 1984.
- Масалова О.В., Леснова Е.И., Грабовецкий В.В. и др. ДНК-иммунизация плазмидой, содержащей ген белка NS5A вируса гепатита C, индуцирует эффективный клеточный иммунный ответ. Молекулярная биология. 2010; 44 (2): 275-83.
- Масалова О.В., Леснова Е.И., Шингарова Л.Н. и др. Комбинированное применение нуклеотидных и аминокислотных последовательностей белка NS3 вируса гепатита С, гена гранулоцитарно-макрофагального колониестимулирующего фактора и блокатора регуляторных Т-клеток индуцирует эффективный иммунный ответ против вируса гепатита С. Молекулярная биология. 2012; 46 (3): 525-34.
- Масалова О.В., Речкина Е.А., Шкурко Т.В. и др. Белки вируса гепатита С в клетках печени при остром гепатите С: связь с повреждением печени и исходом заболевания. Вопросы вирусологии. 2005; 50 (4): 18-23.
- Муковня А.В., Туницкая В.Л., Хандажинская А.Л. и др. Хеликаза/ NTPаза вируса гепатита С. Эффективная система экспрессии и новые ингибиторы. Биохимия. 2008; 73: 822-32.
- Попонин Д.М., Горовиц Э.С., Бондаренко А.Л. Зависимость титров IgG, специфичных к различным белкам вируса гепатита С, от особенностей течения хронической инфекции. Журнал микробиологии, эпидемиологии и иммунобиологии. 2011; 6: 57-61.
- Речкина Е.А., Денисова Г.Ф., Масалова О.В. и др. Картирование антигенных детерминант белков вируса гепатита C при помощи технологии фагового дисплея. Молекулярная биология. 2006; 40 (2): 357-68.
- Уланова Т.И., Пузырев В.Ф., Бурков А.Н., Обрядина А.П. Влияние гетерогенности аминокислотной последовательности на иммунореактивность комплекса антигенных эпитопов, локализованного в пределах 1192-1456 аминокислот белка NS3 вируса гепатита С. Вопросы вирусологии. 2006; 51 (1): 28-30.
- Barnes E., Folgori A., Capone S. et al. Novel adenovirus-based vaccines induce broad and sustained T cell responses to HCV in man. Sci. Transl. Med. 2012; 4: 1-11.
- Capone S., Zampaglione I., Vitelli A. et al. Modulation of the immune response induced by gene electrotransfer of a hepatitis C virus DNA vaccine in nonhuman primates. J. Immunol. 2006; 177 (10): 7462-71.
- Folgori A., Spada E., Pezzanera M. et al. Early impairment of hepatitis C virus specific T cell proliferation during acute infection leads to failure of viral clearance. Gut. 2006; 55 (7): 1012-9.
- Halliday J., Klenerman P., Barnes E. Vaccination for hepatitis C virus: closing in on an evasive target. Expert Rev. Vaccines. 2011; 10 (5): 659-72.
- Ivanov A.V., Korovina A.N., Tunitskaya V.L., Kostyuk D.A., Rechinsky V.O., Kukhanova M.K., Kochetkov S.N. Development of the system ensuring a high-level expression of hepatitis C virus nonstructural NS5B and NS5A proteins. Protein Expr. Purif. 2006; 48: 14-23.
- Ivanov A.V., Smirnova O.A., Ivanova O.N. et al. Hepatitis C virus proteins activate NRF2/ARE pathway by distinct ROS-dependent and independent mechanisms in HUH7 cells. PLoS ONE. 2011; 6 (9): e24957.
- Masalova O.V., Lesnova E.I., Pichugin A.V. et al. The successful immune response against hepatitis C nonstructural protein 5A (NS5A) requires heterologous DNA/protein immunization. Vaccine. 2010; 28 (8): 1987-96.
- Moradpour D., Penin F., Rice C.M. Replication of hepatitis C virus. Nat. Rev. Microbiol. 2007; 5: 453-63.
- Pancholi P., Perkus M., Tricoche N. et al. DNA immunization with hepatitis C virus (HCV) polycistronic genes or immunization by HCV DNA priming-recombinant canarypox virus boosting induces immune responses and protection from recombinant HCV-vaccinia virus infection in HLA-A2.1-transgenic mice. J. Virol. 2003; 77: 382-90.
- Quinkert D., Bartenschlager R., Lohmann V. Quantitative analysis of the hepatitis C virus replication complex. J. Virol. 2005; 79 (21): 13594-605.
- Sallberg M., Frelin L., Weiland O. DNA vaccine therapy for chronic hepatitis C virus (HCV) infection: immune control of a moving target. Expert Opin. Biol. Ther. 2009; 9 (7): 805-15.
- Semmo N., Day C.L., WardS.M. et al. Preferential loss of IL-2-secreting CD4+ T helper cells in chronic HCV infection. Hepatology. 2005; 41 (5): 1019-28.
- Smyk-Pearson S., Tester I.A., Klarquist J. et al. Spontaneous recovery in acute human hepatitis C virus infection: functional T-cell thresholds and relative importance of CD4 help. J.Virol. 2008; 82 (4): 1827-37.
- Thimme R., Neumann-Haefelin C., Boettler T., Blum H. Adaptive immune responses to hepatitis C virus: from viral immunobiology to a vaccine. J. Biol.Chem. 2008; 389 (5): 457-67.
- Torresi J., Johnson D., Wedemeyer H. Progress in the development of preventive and therapeutic vaccines for hepatitis C virus. J. Hepatol. 2011; 54 (6): 1273-85.
- Yerly D., Heckerman D., Allen T. et al. Increased cytotoxic T-lymphocyte epitope variant cross-recognition and functional avidity are associated with hepatitis C virus clearance. J. Virol. 2008; 82 (6): 3147-53.