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The possible formation of population gene pools of zoonotic viruses with a respiratory route of transmission and
a possibility of a pandemic at different stages of biosphere evolution is analyzed. Forming of Poxviruses (En-
tomopoxvirinae) gene pool could be the beginning of transformation from Plants to Arthropoda (Carbon — 375
million years ago) with further evolution connected with Rodentia (Pliocene — 75-70 million years ago) and further
separation of genera (500-300 thousand years ago), and respiratory transmission (epidemics) between humans
(10-2 thousand years BC). Smallpox comeback would be possible. Orthomyxoviruses relicts (genus /savirus)
were possibly connected with Ichthya (Silurian — 500—410 million years ago), and then close interaction with Aves
(the Cretaceous, 125-110 million years ago) with the division of genera and respiratory transmission (epidemics)
between humans (10-2 thousand BC). Next pandemic of influenza A could be catastrophic in terms of the number
of victims and economic damage.

Coronaviruses formed a gene pool by interaction with Amphibia (subfamily Letovirinae) and then with Chiroptera
in Tertiary (110-75 million years ago) with transformation to Artiodactyla (Eocene — 70-60 million years ago),
and only 10-2 thousand years BC acquired the ability to a respiratory transmission and became Alphaviruses,
a seasonal infection of humans. A similar situation is possible in the near future with SARS-CoV-2. Pandemics
associated with zoonoses even more serious than COVID-19 are likely. Constant monitoring of populational gene
pools of zoonotic viruses is necessary.
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[MpoBenéH aHanm3 BO3MOXHOro (hOpMMUpOBaHNS MNOMNYNSALMOHHOIO reHooHAa BUPYCOB C PECNMpaTopHON nepeaa-
yewn, cnocobHbIX K pa3BuUTUIO NAHAEMMWI, HA Pa3nNMYHbIX 3Tanax asonoumm brocdepsl. HazemHoe hopmmpoBaHme
reHooHA0B NMOKCBMPYCOB (MoaceMencTBo Entomopoxvirinae) MOrno HavaTbCa C UX Nepexofa C rofloCEMEHHbIX
pacTeHu Ha YneHnCcToHornx (kapboH, 375 MnH NeT Ha3aa) ¢ fanbHeWLwen 3BOMOUNEN, CBA3aHHOM C rpbi3yHamu B
naneoueHe (75-70 mnH neT Ha3ag) u pasgeneHnem Ha pogpl (300-500 Thic. NeT Hasaa) u pecnMpaTopHON nepe-
naden (anngemun) cpeam nogen (10—2 Teic. neT Jo H.3.). BoamoxeH Bo3BpaT HaTypanbHON OCribl.

PenukTbl OpTOMUKCOBMPYCOB (pop Isavirus), BO3MOXHO, Bbinu cBa3aHbl ¢ peibamu (Ichthya) (cunyp, 500-400 mnH
neT Ha3aa), a 3aTem Mx 3aBonoumnsa Gbina TecHo cBsidaHa ¢ ntuuamm (menoson nepuog, 135-110 MnH neT Has3ag) ¢
pasgeneHuemM Ha poabl U pecnMpaTopHOW Nepedavert cpeau nogen ¢ anuaeMmyeckum pacnpoctpaHeHvem (10-2
ThbIC. €T A0 H.3.). Mocneaytowme naHgemum rpynna A MoryT 6bITb KaTacTPOMUYHBIMU MO YUCIY KEPTB N IKOHO-
Muyeckomy yLuepby.

KopoHaBupycbl Hayanu copmmnpoBaTtb reHoooHA, B3aUMOAENCTBYS C 3eMHOBOAHbIMU (NogcemencTso Letoviri-
nae), Ho B OCHOBHOM C pyKOKpbInbimu (Chiroptera) B TpetuuHoM nepuoge (110-85 mnH net Hasag), obpasys Takke
nepexoa Ha napHonanbix (3oueH, 70—60 mnH net Ha3aa) u nuwb 10—-2 ThiC. NeT 40 H.3. NpMobpeTss CNOCOBHOCTb
K pecnupatopHoi nepegade (B nNepByto odepenb, BEPOSITHO, NpeacTtaBuTensiMu poga Alphacoronavirus), o6oco-
Ounuck B Ce30HHY0 nHdekunto nogen. NogobHasa cutyaumsa Bo3MoxHa B bnmxkanwem 6yaywem ¢ SARS-CoV-2.
Onugemuyeckne kataknuambl, 6onee cepbesHble, Yyem COVID-19, cBA3aHHblE C 300HO3HLIMY BUpycaMu, BEPO-
ATHO, BO3HUKHYT 1 B Byaywiem. HeobxoanM NOCTOSHHBIN MOHUTOPUHI MOMNYMALUMOHHBIX FeHOPOHAO0B 300HO3HbIX
BMPYCOB.

Knro4yeenie croea: 380510uyus; nonynsayuoHHbIl 2eHoghoHO; Poxiviridae; Orthomyxoviridae; Coronaviridae; nmu-

Ubl; epbI3yHbI; iemy4dyue Mblliu; d)UﬂOZGHemUKa.
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The COVID-19 epidemic that emerged in 2019 and
developed into a pandemic has caused the need to re-
turn to the problem of emerging and reemerging infec-
tions. The birth of virology as a science and its devel-
opment contributed the history of this problem [1]. Un-
expected epidemic emergencies resulting from natural
disasters or criminal actions pose a threat to national
and global biosafety, since the fight at the stage of their
emergence is difficult or impossible. Viruses infect
everything living on earth, i.e. representatives of the
kingdoms of Viruses (virophages), Archaea, Bacteria,
Algae, Plants, Fungi, Protozoa, Animals, and Humans
(Table 1). All human viral infections were originally
zoonoses, the pathogens of which, as a result of epyvo-
lution, overcame the interspecies (intertaxon) barrier
and eventually began to circulate in the human popu-
lation, turning into zooanthroponoses and anthropono-
ses. With the emergence of articulation in hominins
Homo sapiens in the modern epoch of the Quaternary
period of the Cenozoic era, it became possible to trans-
mit viruses (e.g., smallpox, influenza, and a complex of
seasonal respiratory viruses) by the respiratory route.
However, this was preceded by evolutionary events in
populations of viruses and their hosts, about 3.5 billion
years in length, associated with the evolution of the en-
vironment. The most important stages were the emer-
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gence of prokaryotes in the Archean, eukaryotes in the
Proterozoic, the origin of the main types of animals in
the Cambrian, the emergence of fish in the Silurian,
amphibians in the Devonian, reptiles in the Carbon-
iferous-Jurassic (Paleozoic—Mesozoic), insectivorous
mammals (I/nsectivora) and birds in the Cretaceous pe-
riod of the Mesozoic Era, bats in the Tertiary period of
the Cenozoic Era, rodents in the Paleocene, and even-
toed animals in the Eocene (Table 1).

All these events preceded the emergence of man.
The first primates appeared in the Paleocene Epoch
and the remains of the first human ancestors (the Pon-
gidae family) are attributed to the Oligocene. Homi-
nids appeared in the Pliocene, and Pithecanthropus and
other hominins (genus Homo) were established in the
Pleistocene of the Quaternary period. The ancestors of
H. sapiens began interacting with animal virus popula-
tions at the beginning of the modern period. And after
the emergence of articulation in hominins, viruses ca-
pable of airborne transmission began to spread actively
(Table 1). The domestication of animals, which took
place 20-10 thousand years ago, significantly activat-
ed the transition of animal viruses to humans [2]. The
evolution of viruses in natural ecosystems as a result of
changes in their population gene pool creates a threat
of the constant emergence of new genetic clusters.
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These processes underlie the emergence of emerging
and reemerging infections.

The process of interpopulation interaction of viruses and
their hosts in changing environmental conditions, in other
words, the ecology of viruses, determines the changes in
the population gene pool, i.e. its evolution. Population is
a unit of evolution. The study of the population gene pool
and the direction of changes in it is critical for finding
the causes of epizootics and epidemics [3]. How does the
outburst of viral populations take place out of common
ecological niches? Where do the populations persist in
the period between epidemics? Why do the properties of
the populations change? The answers to these questions
are necessary to predict the occurrence of epidemic emer-
gencies. Therefore, system research is required to reveal
the principal laws that ensure the preservation of viruses
in the biosphere, to identify the pathways of their evolu-
tionary variability by molecular-genetic methods, to de-
termine the principal laws of genetic material movement
in viral populations and formation of their gene pool.

In the course of evolution, the most successful rela-
tionships, in terms of species preservation, are formed
between viruses and hosts [3, 4], which most often cor-
respond to the average level of virulence of the patho-
gen and susceptibility of the host. For example, the
persistence of viruses in birds and bats ensures their
dissemination over a vast territory during the period of
seasonal migrations. Epidemics and epizootics are of-
ten just an episode in the existence of a viral popula-
tion. They occur, for example, in the case of influenza
A (H5N1) viruses moving from wild birds to domes-
tic ones. Low-virulent strains circulating among wild
birds as a result of a long-term (probably dozens of mil-
lions of years) mutual adaptation are transformed into
highly virulent ones, in particular, as a result of the re-
placement of E627K in the PB2 protein [5].

Over the past 120 years, at least ten pandemics and panzo-
otics have arisen and spread in the world, including Russia;
they were caused by zoonotic viruses transmitted through
airborne route (alimentary route in birds). Lethality among
humans was within 0.1-50%, among poultry — 20-90%.
The number of victims aounted to about 500 million peo-
ple (Table 2), the economic damage exceeded hundreds of
billions, perhaps trillions of dollars. In natural biomes, the
same or genetically close pathogens circulate among ro-
dents (smallpox virus — Poxiviridae, Orthopoxvirus), birds
(influenza viruses — Orthomyxoviridae; Alphainfluenzavi-
rus), and bats (coronaviruses — Coronaviridae, Betacoro-
navirus, subgenera Merbecovirus and Sarbecovirus).

The Orthomyxoviridae family may have begun to form
(genus Isavirus) since the Silurian Period of the Paleo-
zoic Era (more than 400 million years ago) due to the
emergence of fish. In the Carboniferous (378-325 million
years ago), with the emergence of terrestrial arthropods
(Arthropoda), representatives of the genera Thogotovirus
and Quaranjavirus could have appeared. In the Creta-
ceous Period of the Mesozoic Era (110—135 million years
ago), the formation of the genus Alphainfluenzavirus be-
came possible, the representatives of this genus are close-
ly related to birds (Table 1).

Known potential viruses (interaction consequences)
animals and viruses; respiratory viruses epidemics; epizootics

of viruses with alimentary transmission; the transition of zoo-
noses to zooanthroponoses and anthroponoses
An increase in the number of anthroponoses, the emergence of

Respiratory transmission of viruses (smallpox, influenza, coro-
new and recurring infections

The beginning of interaction between populations of viruses
naviruses and other infections)

and hominins. Poxviridae — division into genera
Interaction of population gene pools of H. sapiens, domestic

Pandemics and panzootics

Background representatives of the biosphere
and their predecessors
gration of peoples, wars, trade, colonization, development

of new territories)

Formation of civilizations and activation of contacts (mi-
XXl century  High population size and density

acquisition of articulation; beginning of domestication

(dogs)
First civilizations; domestication of artiodactyls (sheep,

and other representatives of H. sapiens ancestors
goats, cattle, pigs), equids (horses), birds (ducks, geese,
chickens, turkeys); settling rodents into housing

Large farms of farm animals

H. sapiens (formation of the population gene pool);
Traffic flows, globalization.

H. heidelbergensis, H. neanderthalensis

Age
(mln years)
500-300
thousand
300-40
thousand
10-2
thousand BC
2 thousand
years BC —
XIX century.

Epoch
Holocene

Period

Era
Note. *One of the existing schemes was used. Some discrepancies in chronology are not of fundamental importance in the framework of the problem under discussion.
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Fig. 1. Activation of foci of existing Orthopoxviruses in the world after the eradication of smallpox.

Poxviruses (subfamily Entomopoxvirinae) adapted to
insects (/nsecta) may have originated in the Carbonifer-
ous. Further evolution of poxviruses (subfamily Chordo-
poxvirinae) continued in rodent populations (Rodentia)
in the Paleocene (75—70 million years ago) with further
evolution in populations of even-toed animals (4rtiodac-
tyla) in the Eocene (70—60 million years ago). The final
division of poxviruses into genera occurred in the modern
epoch of the Quaternary Period about 500 thousand years
ago (Table 3, Fig. 1) [6-9]. Rodents (Rodentia) remained
the main natural hosts (Table 2). They serve as the main
natural reservoir for orthopoxviruses. Natural centers
are located on a huge territory from tropical deserts to
subarctic tundra (Fig. 1) [9]. The reemergence of natural
smallpox virus is theoretically possible, as it happened at
least three times in the past [6—10]. According to Ameri-
can researchers, the use of the smallpox virus by terrorists
is comparable to damage from the explosion of a hydro-
gen bomb [11]. The lethality in the case of smallpox dis-
ease reaches 40—-60% of the number of victims in the case
of airborne infection.

Obviously, such a course of evolution of zoonotic ortho-
poxviruses cannot be ruled out in the future, with a grad-
ual transition from wild animals to domestic animals, and
then to humans [8-10, 12]. The increasing frequency of
monkeypox outbreaks among humans in Africa in recent
years, including 2020, is alarming. Studies have shown
that the natural reservoir of the virus is rodents. There
are at least 4 species of squirrels (Sciuridae: Rodentia) in
West and Central Africa, which have been diagnosed with
asymptomatic infection. Thus, monkeypox is actually the
smallpox of squirrels and other rodents [13-21]. In recent

years, Brazil, India and Pakistan have reported outbreaks
among domestic animals and people in contact with them
caused by zoonotic smallpox viruses associated with ro-
dents. We have isolated the Murman smallpox virus from
the root vole Microtus oeconomus in the uninhabited
Lovozero Massif of the Kola Peninsula [22]. Based on
genome sequencing, eleven orthopoxviruses isolated in
Africa, Asia and America were identified. According to
the calculations of specialists from Novosibirsk-based
«Vector» Federal Budgetary Institution of Science State
Scientific Center of Virology and Biotechnology of the
Russian Federal Service for Surveillance on Consumer
Rights Protection and Human Wellbeing (Rospotreb-
nadzor) based on the analysis of the accumulation rate
of mutations in the genome, the separation of poxviruses
from the progenitor virus began about 500 thousand years
ago. The calculations have shown that the types of cam-
el smallpox and African barefoot gerbils (7atera), which
are evolutionarily close to the natural smallpox virus,
emerged from a common ancestor about 4,000 years ago
[6, 7,23, 24]. It allows the possibility of the virus outburst
into the human population against the background of al-
most absent collective immunity (Fig. 2) [9]. The conse-
quences will be disastrous. It requires the development of
the fourth generation smallpox vaccine and effective and
safe chemotherapeutic agents.

Viruses with a high degree of genome variability are
especially dangerous. These are, first of all, viruses of the
Orthomyxoviridae family. Four genera of influenza viruses
(Alphainfluenzavirus, Betainfluenzavirus, Gammainfluen-
zavirus, and Deltainfluenzavirus) are transmitted by the re-
spiratory route and cause annual epidemics and pandemics
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among humans, and epizootics and panzootics of wild and
domestic animals, primarily, when transmitted through wa-
ter and feed. Viruses of the Thogotovirus and Quaranjavirus
genera, found in Russia as well, are transmitted to sensitive
vertebrates and humans through the bites of ixodid and argas
ticks. Viruses of the Isavirus genus infect fish (Fig. 3) [9].

Influenza A viruses are the most important part of the
problem of novel infections. The segmented genome con-
tains eight genes encoding viral proteins, which creates
conditions for gene recombination in the event of simul-
taneous replication of two or more viruses in one organ-
ism. Emerging recombinants, providing a high degree of
variability, can have different biological and antigenic
properties, which helps them (if included in the popula-
tion gene pool) overcome the host’s protective cellular
systems and, in some cases, provide the occurrence of
panzootics and pandemics [25].

Influenza A viruses are widespread in the biosphere;
according to the latest data, even ocean plankton con-
tains them, but birds are their main natural reservoir.
These population relationships have been firmly estab-
lished since the Cretaceous Period of the Mesozoic Era
(100-130 million years ago). Only 2—10 thousand years
BC, with the emergence of the first civilizations, influen-
za A viruses, having changed the receptor affinity from
02-3 to a2-6, acquired the ability for airborne transmis-
sion among people with the occurrence of epidemics and
later pandemics. There are orders of magnitude among
more people on Earth today than it would be expected
for populations of mammals of our size. These are ide-
al conditions for pandemics to occur. Natural centers
of influenza viruses are still widespread. Our survey of
the territory of Northern Eurasia revealed the circulation
of 15 out of 18 known subtypes of Influenza A viruses
among birds, including HS5, which is associated with the
severe epizootic that broke out in 2003 followed by the
panzootic among birds (Fig. 4) [25]. Hundreds of mil-
lions of birds in Southeast Asia and Oceania died and
were killed. People were infected and died (table 3) [26].
In April 2005, an epizootic outbreak among wild birds
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Fig. 2. Duration of smallpox post-vaccination immunity.

broke out on Qinghai Lake in the PRC, the northeastern
part of the Tibetan Plateau. During the spring migration,
the viral strains moved to the north along the Dzungarian
Gate between the Tien Shan and Mongolian Altai, which
links Southeast Asia with Central Asia and Western Si-
beria. West Siberian highly virulent strains HPAI form a
fairly compact genetic Qinghai-Siberian group 2.2.

In early April 2008, the virus penetrated the territory
of the southern Primorsky Territory with migrating birds
and spread to the North. With the emergence of the Us-
suriysk clade in Northern Eurasia, the following genetic
clusters were formed: the Qinghai-Siberian cluster (2.2) —
in the western sector, the Ussuriysk cluster (2.3.2) — in the
eastern sector of Northern Eurasia (Fig. 4). The mortality
rate caused by H5N1 avian influenza among humans is
still very high in the world, namely 60%. This is higher
than for smallpox. As of July 2020, 879 cases were de-
tected worldwide among people in 16 countries of South-
East Asia and in Egypt. The virus continues to circulate in
natural biomes in Russia [27, 28].

The infection process begins with the attachment of the
influenza virus to a cellular receptor — a derivative of sial-

9, influenza viruses A (Alphainfluenzavirus)

— influenza viruses B (Betainfluenzavirus)

E< influenza viruses C (Gammainfluenzavirus)
95
99

influenza viruses D (Deltainfluenzavirus)
—=m Thogotovirus %i

— — Quaranjavirus %

— Isavirus gy«

Fig. 3. Phylogenetic structure of the Orthomyxoviridae family.
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Fig. 4. Consequences of the penetration of a highly virulent A(HSN1) influenza virus into Northern Eurasia (spring 2005 — spring 2008).

ic acid attached to galactose or glucosamine by an a2-3-
or 02-6-bond, which is recognized by influenza viruses,
depending on the host. Human influenza viruses infect
cells with a2-6-receptors located on the nasal mucosa.
The number of these receptors gradually decreases in the
following order: nasopharynx, trachea, bronchi, bronchi-
oles. a2-3-receptors were found on bronchiolar and alve-
olar cells decreasing in number up the respiratory tract,
and in birds — on intestinal epithelial cells [27]. The novel
pandemic virus HIN1pdm09, which emerged on the bor-
der of Mexico and the United States, is a reassortant of
two swine viruses of the American and Euro-Asian geno-
types. The virus changed its receptor specificity from o2-
3 to a2-6, gaining the possibility of reproduction in the
upper respiratory tract, and thus it acquired the unique
ability of influenza viruses to spread indefinitely with no-
ticeable mortality among humans (Table 3).

The increase in virulence is particularly associated with
a mutation in receptor-binding site 222 of hemagglutinin
HAT1 with the replacement of aspartic acid by glycine
or asparagine. In this case, the virus changes its recep-
tor specificity from a2-6 to 02-3 and acquires the abili-
ty to damage the lower respiratory tract, causing lethal
pneumonia. We have carried out a genetic examination
of over 100 materials from patients with lethal outcome.
In all cases, death was caused by primary pneumonia.
In 70% of cases, the sequencing revealed mutants of the

252

pandemic virus in the lung tissue of deceased patients,
who were not vaccinated and did not receive antiviral
drugs at the early stages. However, the mutants lost the
ability (02-6-receptor affinity) for airborne transmission.
If this ability persists (a2-3—02-6), the consequences can
be catastrophic, the experimentally possibility of such
events has been proven [29, 30].

Since February 2013, i. e. at the beginning of the spring
bird migration season, the human incidence was identified
in China, etiologically associated with H7N9, another avi-
an influenza A virus. As of mid-September 2019, 1,567
cases of human infection were laboratory — confirmed
with 40% mortality, similar to smallpox. The virus ap-
peared as a result of reassortment of influenza A viruses in
wild birds. It was brought to the territory of Russia by wild
birds with the formation of natural centers of infection.
Then, the virus was delivered by migratory birds from the
Asian tundra to the Pacific coast of America, and further,
along the migration channels, it penetrated the central and
eastern parts of the continent over the period of 2—3 years
[9].

It is necessary to prepare candidate vaccine strains in
advance for using them during future influenza pandem-
ics. To date, bioengineers across the world have already
designed about 20 vaccine strains for all known genetic
clades ofthe HS virus and other zoonotic influenza A viruses
(Table 4) [31]. The main research was carried out in the
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United States with significant contributions by Chinese
and British researchers. Only one strain was obtained
in the Russian Federation [32]. The availability of these
strains will not prevent the disaster, but it will minimize
the consequences.

Further development of antiviral chemotherapeutic
agents with a new mechanism of action is requied as well.
In particular, Baloxavir Marboxil developed by Roche
in 2018 is very promising. This drug blocks viral replica-
tion at the early stage by inhibiting the endonuclease of
the polymerase complex. The drug has already been reg-
istered in the United States, Japan and some other coun-
tries and is needed as a reserve.

We analyzed the situation with a virus from the
Betacoronavirus genus (Coronaviridae: Coronaviri-
nae) [33, 34]. The main natural reservoir of viruses of
the Coronavirinae subfamily are bats (Table 2) [35-42].
Moreover, besides China, viruses similar to the epidemic
ones were isolated from bats in Western Europe [43-45],
in America [46, 47], and in Africa [48, 49].

Mutual adaptation of populations of bats and corona-
viruses could have started in the Tertiary Period of the
Cenozoic Era (110-85 million years ago) followed by the
formation of the Orthocoronavirinae subfamily. The order

EDITORIAL CONCEPT

Chiroptera (bats) includes at least 16 families, 170 genera
and about 850 species; it ranks second in terms of the
number of species after rodents. Bats are a very important
natural reservoir for zoonotic viruses. A huge population
gene pool was accumulated, allowing the representatives
of this subfamily (Coronavirinae) to spread among birds
and mammals, including Humans, Carnivores, Odd-toed
and Even-toed mammals, Rodents, Double-toothed ro-
dents, Insectivorous (Table 2). Representatives of the Le-
tovirinae subfamily adapted to Amphibia may belong to
relict species that could have started forming in the Devo-
nian Period of the Paleozoic Era (about 400 million years
ago) (Tables 1 and 2).

The SARS-CoV-2 pandemic that emerged in 2019 will
be significantly reduced by joint efforts. But there is no
reason for the disappearance of the pathogen that caused
it. It is likely that SARS-CoV-2 with a reduced virulence
will circulate in human populations for the foreseeable
future as a seasonal respiratory virus along with corona-
viruses belonging to the Alphacoronavirus genus (Duvin-
acovirus subgenus, HCoV) and other seasonal respiratory
viruses: of the Orthomyxoviridae family (influenza vi-
ruses A/HIN1pdm2009, A/H3N2, B); of the Paramyxo-
viridae family (Paramyxovirinae), Rubulavirus genus

Table 4. Genetic clades of subtypes A(H5S), A(H7), A(H9), and A(H1) of Influenza virus A

Genetic clade (subtype) | Host (birds) | Location Availability of vaccine candidate
1. H5NI1 Wild and domestic Eurasia, Africa +
1.1. H5NI1 Domestic Southeast Asia +
1.1.2. H5N1 Wild Southeast Asia +
2.1.1. H5NI1 Domestic China +
2.1.3.2. H5N1 Domestic Southeast Asia +
2.1.3.2a H5NI1 Domestic Southeast Asia +
2.2. H5NI1 Wild, domestic China, Russia, Eurasia, Africa +
2.2.1. H5N1 Domestic Africa (Egypt), Asia (Turkey) +
2.2.1.1. H5N1 Domestic Africa (Egypt) +
2.2.1.2. H5N1 Wild and domestic Eurasia, Africa (Egypt) +
2.3.2.1. H5N1 Wild China +
232.1a H5N1 Domestic India, China, Nepal, Bangladesh, RF +
23.1.1c H5NI1 Domestic Southeast Asia, Africa (Cameroon) +
232.1a H5N1 Wild, domestic Bangladesh*, India*, Nepal +
232.1B China +
23.2.1c H5NI1 Domestic Southeast Asia* +
2.3.4.4h H5NS Wild and domestic China*, Laos, Japan +
2.3.4.2. H5N8 Domestic Bangladesh, China +
2344a H5N8 Wild and domestic Asia, Europe, Africa, America +
2.3.4.4c H5N2 Wild and domestic China, South Korea, Vietnam, Japan, +
Philippines
2.3.4.4e H5N2/N8 Domestic Cambodia, China, Bulgaria*, Germany*, -
2.3.4.4. H5N5 Wild and domestic Czech Republic, Georgia, Netherlands, -
Hungary*, RF, Montenegro
7.1 H7N9 Domestic Vietnam +
7.2. H7N9 Wild China, Niderlands* +
H7N4 Domestic China -
HON2 Wild and domestic Asia, Africa +
HIN2 Domestic (pigs) USA*, Brazil*, Germany
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(HPIV-2,4), Respirovirus genus (HPIV-1,3 — human
parainfluenza viruses), Pneumovirus genus (HRSV — hu-
man respiratory syncytial virus), Metapneumovirus ge-
nus (HMPV — human metapneumovirus); of the Picor-
naviridae family, Enterovirus genus (HEV-D — human
enterovirus D), 152 serotypes (formerly HRV — human
rhinovirus); of the Adenoviridae family, Mastadenovirus
genus, which includes 54 serotypes of 7 human adenovi-
ruses (HAdV-A, HAdV-B, HAdV-C, HAdV-D, HAdV-E,
HAdJdV-F, HAdV-G); of the Parvoviridae family, Bocavi-
rus genus (HBV — human bocavirus) (Table 2). All sea-
sonal viruses with the airborne transmission in humans
belong to families with a very wide range of hosts, espe-
cially among mammals (Table 2).

The technology of metagenomic sequencing (or next
generation sequencing), based on sequencing of the to-
tal nucleic acid and further bioinformatic analysis, has
provided new opportunities for the rapid identification
of already isolated viruses and for the search for new
viruses directly in biological samples. The taxonomy
of 80 zoonotic viruses isolated as a result of long-term
monitoring in different ecosystems of Northern Eurasia
has been studied using modern methods. The results of
this study showed that zoonotic viruses belonging to at
least 17 genera and eight families circulate in the territory
of Northern Eurasia. Phylogenetic analysis of the isolat-
ed strains was performed [27]. Modern methods make it
possible to analyze a virome, i. e. the entire ensemble of
viruses associated with the host. Thus, metagenomic se-
quencing allows to quickly identify novel or divergent
viruses, determine the possible source of new zoonotic
infections, analyze the structure of an animal virome to
control changes in its structure that lead to the emergence
of new pathogens, and carry out the genomic analysis of
divergent strains to improve molecular diagnostic meth-
ods. Modern molecular-genetic methods can serve as a
universal tool for diagnosing viral infections directly in
clinical samples [9].

Studies of the virus ecology aimed at investigating the
laws of interpopulation relationships between zoonotic
viruses and their vertebrate hosts in various ecosystems
have been carried out in the USSR since the 1970s. An

extensive program was supervised by the All-Soviet
Union Center of Ecology, D. I. Ivanovsky Institute of
Virology [50]. Some areas of the Center’s research were
comparable to the activities of the U.S. Epidemic Intelli-
gence Service [51-53]. The main objectives were to study
the ecology and evolution of zoonotic viruses that threat-
en biosafety, and to analyze their potential for spread-
ing within climatic zones and various landscape zones
from the Arctic to the subtropics [54, 55]. The structure
of the All-Soviet Union Center of Ecology included
more than 20 reference bases that worked under a sin-
gle program using unified methods. An independent unit
on research of birds in the framework of the All-Soviet
Union Ornithological Committee was supervised by the
Institute of Biology of the Russian Academy of Sciences
and D. 1. Ivanovsky Institute of Virology of the Russian
Academy of Medical Sciences [56]. Similar research was
carried out abroad in the form of an extensive program
for the study of birds in Asia [57]. Another specific field
of study, the features of virus circulation at high latitudes
and the circumpolar spread of a number of unique zoo-
notic viruses, was established [58]. A special program in
the field of ecology of influenza viruses in natural ecosys-
tems and the emergence of the novel pandemic virus A/
HIN1pdm2009 was implemented [25-28].

Here are some examples of the spread of viruses among
different representatives of eukaryotes (Table 5) [60]. As
a result of a long evolution, the representatives of at least
the Reoviridae and Rhabdoviridae families managed to
increase the number of their hosts by joining Protozoa,
Plants and other eukaryotes, including humans.

The phylogenetic analysis reveals the relations of the
Iridoviridae and Ascoviridae families (Lepidoptera insect
viruses), Mimiviridae (viruses of protozoan), and Poxvi-
ridae; the Herpesviridae and Myoviridae families (ar-
chaeal and bacterial viruses). It is possible to assume the
transition of Adenoviridae viruses from Reptiles to Birds
and Even-Toed Animals. The representatives of the Reo-
viridae family have something in common with Totyviri-
dae (the viruses cause latent infection of Fungi and Proto-
zoa) and Cystoviridae (viruses of bacteria pathogenic for
plants). In the Reoviridae family, the most ancient viruses

Table 5. Examples of present distribution of viruses among different representatives of Eukaryotes

Viruses Hosts
family genome Algae Plants Protozoa Fungi Animals Human
(Algae) | (Plantae) | (Protozoa) | (Fungi) (Animalia) (Homo)
Invertebrates Vertebrates
(Invertebrata) (Vertebrata)
Endornaviridae  dsRNA, linear, 14-18 kb + - + - - —
Reoviridae dsRNA, 9-12 segments, 19-32 kb — + + + + +
Metaviridae ssRNA(+), 4-10 kb, presence of - - + + - —
reverse transcriptase
Pseudoviridae ssSRNA(+), linear, 5-9 kb, pres- + - + + - —
ence of reverse transcriptase
Rhabdoviridae ssRNA(-), linear, 11-15 kb - - — + + +
Iridoviridae dsDNA, linear, 140-300 kb - - - + + —
Herpesviridae dsDNA, linear 124-241 kb - - — + + +

254



PROBLEMS OF VIROLOGY (VOPROSY VIRUSOLOGII). 2020; 65(5)
DOI: https://doi.org/10.36233/0507-4088-2020-65-5-1

were the ones of marine Protozoa (Mimoreovirus), Fish
(Aquareovirus), Plants (Orizavirus, Fijivirus) and Trans-
mitting Insect (Idnareovirus, Dinovernavirus, Phytoreo-
virus), Fungi (Mycoreovirus) [59]. Significantly later,
viruses of vertebrates, i.e. birds and mammals (includ-
ing humans), were formed in the presence of arthropod
vectors (Coltivirus, Orbivirus, and Seadornavirus) or, in
their absence, with respiratory and alimentary transmis-
sion routes (Orthoreovirus and Rotavirus), which took at
least 550 million years (Table 1).

The above examples indicate the dependence in the
formation of the population gene pool of viruses on the
evolution of their hosts, which, in turn, is determined by
the variability of the environment (geological cataclysms,
the state of the World Ocean and atmosphere, climate,
etc.). During the intertaxon viral transmission, the pop-
ulation gene pool provided, in particular, a change in the
pathways of infection from contact (in Archaea, Bacteria,
Algae, Fungi, and Protozoa) to the transmission through
Arthropods (in Plants and Vertebrates), fecal-oral (Verte-
brates and humans), and respiratory (humans).

The process of emergence of new viral infections in
humans is determined by the high genetic variability of
viruses and the ecological characteristics of their natural
reservoir [60]. The main mechanism of adaptation of vi-
ruses to humans is associated with recombinations and
mutations in certain regions of the viral genome. Molecu-
lar factors of pathogenicity of viruses can include genes of
receptor-binding proteins, replication complex, and other
regions. However, the exact mechanism of emergence and
selection of such variants at the population level is still un-
derinvestigated. It is not known which receptors are used
by viruses in natural biomes and what role the intermediate
host plays in overcoming the intertaxon barrier.

The description of viral diversity in natural biomes
and the study of evolutionary processes leading to the
emergence of novel viral infections are urgent funda-
mental problems and have serious applied significance in
controlling the emergence of novel and reemerging vi-
ral infections and minimizing the consequences of their
emergence. It is clear that epidemic emergencies that
are much more serious than COVID-19 will occur in the
foreseeable future. This requires joint efforts, preferably
at the international level, aimed at minimizing the con-
sequences of emerging disasters. It is necessary to con-
stantly monitor the population gene pools of potentially
dangerous viruses, first of all those capable of airborne
transmission.
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