ОРИГИНАЛЬНЫЕ ИССЛЕДОВАНИЯ

ОРИГИНАЛЬНОЕ ИССЛЕДОВАНИЕ

DOI: https://doi.org/10.36233/0507-4088-297

© ШЕИН Д.А., РЫЖОВА Н.Н., КУНДА М.С., ЕРМОЛОВА Е.И., ОЖАРОВСКАЯ Т.А., ПОПОВА О., НИКИТЕНКО Н.А., КРАСНОСЛОБОДЦЕВ К.Г., БУРЦЕВА Е.И., ЗУБКОВА О.В., ВОРОНИНА О.Л., ГИНЦБУРГ А.Л., 2025

Генетическая характеристика изолята аденовируса человека 55-го генотипа (*Adenoviridae*: *Mastadenovirus*), выделенного в Москве в 2022 г.

Шеин Д.А., Рыжова Н.Н., Кунда М.С., Ермолова Е.И., Ожаровская Т.А., Попова О., Никитенко Н.А., Краснослободцев К.Г., Бурцева Е.И., Зубкова О.В. Воронина О.Л., Гинцбург А.Л.

ФГБУ «Национальный исследовательский центр эпидемиологии и микробиологии имени почетного академика Н.Ф. Гамалеи» Минздрава России, 123098, г. Москва, Россия

Резюме

Введение. Аденовирусная инфекция встречается повсеместно в виде спорадических случаев и отдельных вспышек. Аденовирус человека 55-го генотипа (HAdV-55), эндемичный для территорий Китая и Южной Кореи, вызывает острые респираторные вирусные инфекции (ОРВИ) разной степени тяжести как среди гражданского населения, так и в воинских коллективах в разных странах мира. Геномные исследования способствуют достоверной идентификации HAdV-55.

Цель данной работы состояла в идентификации HAdV, выделенного в Москве в 2022 г., проведении полногеномного секвенирования и сравнительного геномного исследования.

Материалы и методы. HAdV-55 выделили из образца пациента, госпитализированного с пневмонией, исследовали методами анализа полиморфизма длины рестрикционных фрагментов и полногеномного секвенирования. Биоинформационный сравнительный анализ выполняли для выборки геномов 83 изолятов.

Результаты. Проведено полногеномное секвенирование изолята HAdV-55, впервые выделенного в РФ. Последовательность генома изолята SCV3008:Ad55 депонировали в GenBank (регистрационный номер PQ641625). Выявлены уникальные мутации в геноме SCV3008:Ad55, одна из которых приводила к консервативной замене T29A в пентоне, не влияющей на его функции. Филогенетический анализ показал кластеризацию SCV3008:Ad55 с изолятами клады II, включившей представителей 7 стран разных континентов, что свидетельствует о широком распространении HAdV-55. Изоляты эндемичных регионов Китая и Южной Кореи формировали отдельные клады. Исследование полиморфизма длин микросателлитов в нетранслируемых областях генома стало дополнительным инструментов различения близкородственных геномов.

Заключение. Сравнительное геномное исследование изолятов HAdV-55, появившегося в результате рекомбинации HAdV-14 и HAdV-11, показало медленное накопление мутаций с 1969 г. как в транслируемых, так и в нетранслируемых областях, позволило выявить уникальные замены нового изолята SVC3008:Ad55. Полученная геномная информация заложила основу для дальнейшего мониторинга HAdV-55 в России и продемонстрировала информативность и значимость полногеномных исследований для наблюдения за аденовирусами. Разработка и внедрение в практику методов генотипирования, нацеленных на выявление HAdV-55 и других клинически значимых генотипов, позволит значительно повысить эффективность диагностики аденовирусных инфекций с угрозой развития бронхопневмонии.

Ключевые слова: аденовирус человека 55-го генотипа; HAdV-55; полногеномное секвенирование; филогенотический анализ

Для цитирования: Шеин Д.А., Рыжова Н.Н., Кунда М.С., Ермолова Е.И., Ожаровская Т.А., Попова О., Никитенко Н.А., Краснослободцев К.Г., Бурцева Е.И., Зубкова О.В., Воронина О.Л., Гинцбург А.Л. Генетическая характеристика изолята аденовируса человека 55-го генотипа (*Adenoviridae: Mastadenovirus*), впервые выделенного Москве в 2022 г. *Вопросы вирусологии*. 2025; 70(5): 431–443.

DOI: https://doi.org/10.36233/0507-4088-297 EDN: https://elibrary.ru/aatdbs

Финансирование. Работа выполнена при финансовой поддержке государственного задания НИЦЭМ им. Н.Ф. Гамалеи (регистрационный номер N.122021800184).

Конфликт интересов. Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.

Этическое утверждение. Исследование проводили при добровольном информированном согласии пациентов. Протокол исследования одобрен Этическим комитетом ГБУЗ г. Москвы «Инфекционная клиническая больница № 1 Департамента здравоохранения города Москвы» (Протокол № 8 от 28.12.2022).

ORIGINAL STUDY ARTICLE

DOI: https://doi.org/10.36233/0507-4088-297

Genetic characteristics of the isolate of human adenovirus type 55 (*Adenoviridae*: *Mastadenovirus*) isolated in Moscow in 2022

Daniil A. Shein, Natalia N. Ryzhova, Marina S. Kunda, Ekaterina I. Ermolova, Tatiana A. Ozharovskaia, Olga Popova, Natalia A. Nikitenko, Kirill G. Krasnoslobodtsev, Elena I. Burtseva, Olga V. Zubkova[⋈], Olga L. Voronina, Alexander L. Gintsburg

National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation, 123098, Moscow, Russia

Abstract

Introduction. Adenovirus infection occurs globally in the form of sporadic cases and isolated outbreaks. Human adenovirus type 55 (HAdV-55), endemic in China and South Korea, causes acute respiratory viral infections (ARVI) of varying severity, both among the civilian population and in military units in different countries of the world. Genomic research facilitates reliable identification of HAdV-55.

The aim of this study was to identify HAdV isolated in Moscow in 2022, as well as to conduct whole-genome sequencing and comparative genomic research.

Materials and methods. HAdV-55 was isolated from a sample of a patient hospitalized with pneumonia and analyzed using restriction fragment length polymorphism analysis and whole-genome sequencing. Bioinformatics comparative analysis was performed on a sample of sequences of 83 isolates.

Results. The whole-genome sequencing of first isolated in Russia HAdV-55 was conducted. The sequence of isolate SCV3008:Ad55 was deposited in GenBank (Accession Number PQ641625). Unique mutations in the SCV3008:Ad55 genome were identified, one of which resulted in a conservative T29A substitution in the penton that did not affect its functions. Phylogenetic analysis showed clustering of SCV3008:Ad55 with isolates of clade II, which included representatives of 7 countries on different continents, indicating a wide distribution of HAdV-55. Isolates from endemic regions of China and South Korea formed separate clades. The study of microsatellite length polymorphism in untranslated regions of the genome became an additional tool for distinguishing closely related genomes.

Conclusion. The obtained genomic information laid the foundation for further monitoring for HAdV-55 in Russia and demonstrated the informativeness and significance of whole-genome studies for monitoring adenoviruses. The development and implementation of genotyping methods aimed at detecting HAdV-55 and other clinically relevant genotypes will significantly improve the effectiveness of the diagnosis of adenovirus infections with the threat of developing bronchopneumonia.

Keywords: human adenovirus type 55; HAdV-55; whole-genome sequencing; phylogenetic analysis

For citation: Shein D.A., Ryzhova N.N., Kunda M.S., Ermolova E.I., Ozharovskaia T.A., Popova O., Nikitenko N.A., Krasnoslobodtsev K.G., Burtseva E.I., Zubkova O.V., Voronina O.L., Gintsburg A.L. Genetic characteristics of the isolate of human adenovirus type 55 (*Adenoviridae: Mastadenovirus*), isolated in Moscow in 2022. *Problems of Virology (Voprosy Virusologii*). 2025; 70(5): 431-443. DOI: https://doi.org/10.36233/0507-4088-297 EDN: https://elibrary.ru/aatdbs

Funding. The study was carried out with the financial support of the State assignment of N.F. Gamaleya National Research Center for Epidemiology and Microbiology (registration number N.122021800184).

Conflict of interest. The authors declare no apparent or potential conflicts of interest related to the publication of this article

Ethical approval. The study was conducted with the voluntary informed consent of patients. The study protocol was approved by the Ethics Committee of the Moscow State Medical University «Infectious Clinical Hospital No. 1 of the Moscow Department of Health» (Protocol No. 8 dated 12/28/2022).

Введение

Аденовирусы (семейство Adenoviridae) — безоболочечные, содержащие двухцепочечную ДНК вирусы, подразделяют на 6 родов: Aviadenovirus, Barthadenovirus, Ichtadenovirus, Mastadenovirus, Siadenovirus и Testadenovirus. Аденовирусы млекопитающих входят в род Mastadenovirus, включающий более 50 видов. Аденовирусы человека (HAdV) относятся к 7 видам: Mastadenovirus adami, M. blackbeardi, M. caesari, M. dominans, M. exoticum, M. faecale и M. russelli¹.

Различные виды HAdV обладают разным тканевым тропизмом, что зачастую коррелирует с конкретными клиническими симптомами инфекции [1]. HAdV вызывают в основном острые респираторные вирусные инфекции (ОРВИ), но могут также поражать органы зрения, кишечник, мочевыводящие пути и нервную систему. Тяжесть заболевания зависит

¹ICTV. Family: Adenoviridae. Доступно по: https://ictv.global/report/chapter/adenoviridae/adenoviridae

от типа вируса и иммунного статуса хозяина [1–5]. Наиболее серьезные респираторные инфекции вызывают HAdV 8 генотипов из 10, принадлежащих виду *M. blackbeardi*: 3, 7, 11, 14, 16, 21, 50, 55 [6].

История выделения HAdV-55 в отдельный генотип показывает роль и развитие методической базы вирусологии, способствующей более точной классификации вирусов. Впервые атипичный вирус HAdV-11 как возбудитель ОРВИ был выявлен с помощью иммунохимических методов в 1974 г. [7]. В 1991 г. сравнение полиморфизма длин фрагментов рестрикции ДНК изолятов позволило выделить генотип HAdV-11a и показать, что вирусы этого генотипа ассоциированы с инфекцией верхних дыхательных путей и бронхопневмонией [8]. В 2009 г. был опубликован первый полный геном HAdV-11a изолята HAdV11-QS (регистрационный номер FJ643676), полученный сборкой перекрывающихся ампликонов, секвенированных по Сэнгеру. Сравнение данных секвенирования способствовало доказательству происхождения HAdV-11a посредством рекомбинации: геном HAdV-11a имеет в основе геном HAdV-14 и часть гена гексона HAdV-11 [9]. В 2011 г. рабочая группа по аденовирусам человека (Human Adenovirus Working Group) рекомендовала использовать сиквенсы полных геномов для типирования и характеристики HAdV и классифицировать рекомбинанты в новые генотипы при отличии нуклеотидной последовательности и биологических свойств [10]. На основании этих рекомендаций в 2013 г. рекомбинант HAdV-11a был назван HAdV-55 с типовым изолятом HAdV11-QS [11]. Ретроспективные исследования коллекционных изолятов показали, что HAdV-55 является эндемичным для Китая и Южной Кореи и доминировал среди вирусов, выделенных при ОРВИ в Пекине с 1965 по 1985 г. [8]. Вспышки HAdV-55-ОРВИ в организованных коллективах фиксируют с 1969 г. среди воинского контингента в Испании [7], в центре профессиональной подготовки в США [12], среди детей в Аргентине, Чили и Уругвае [13], в психиатрических институтах Израиля [14], в семейных коллективах в Китае [15]. HAdV-55 по сравнению с респираторными аденовирусами других генотипов вызывает более тяжелые заболевания и представляет значительную угрозу здоровью населения [6]. В России, по данным Центра экологии и эпидемиологии гриппа Института вирусологии им. Д.И. Ивановского ФГБУ «НИЦЭМ им. Н.Ф. Гамалеи» Минздрава России в сотрудничестве с 10 опорными базами, в эпидемическом сезоне 2021–2022 гг. на исследованных территориях частота положительных проб на аденовирусы составила 7,7% (1793 образца) из числа тестированных на ОРВИ [16]. HAdV, выделенный из одного из 1793 образцов, стал объектом подробного исследования.

Цель работы – идентификация HAdV, выделенного в Москве в 2022 г., проведение полногеномного секвенирования и сравнительного геномного исследования.

Материалы и методы

Материалы. Бронхоальвеолярный лаваж (БАЛ) от госпитализированного мужчины 34 лет с диагно-

зом «пневмония неуточненная».

Исследование проводили при добровольном информированном согласии пациента. Протокол исследования одобрен Этическим комитетом ГБУЗ г. Москвы «Инфекционная клиническая больница № 1 Департамента здравоохранения города Москвы» (Протокол № 8 от 28.12.2022)

Методы. Идентификацию вирусов проводили посредством экстракции РНК/ДНК из клинического материала с помощью набора «РИБО-ПРЕП» («Интерлабсервис», Россия) с последующей детекцией РНК/ДНК возбудителей респираторных инфекций в полимеразной цепной реакции с обратной транскрипцией в реальном времени (ПЦР-РВ) с использованием коммерческих тест-систем «АмплиСенс ОРВИ-скрин-FL» («Интерлабсервис», Россия) согласно инструкции производителя на детектирующем амплификаторе Віо-Rad CFX-96 (Віо-Rad, США).

Выделение *HAdV*. Вирус накапливали в клетках НЕК293 (эмбриональной почки человека): 100 мкл БАЛ заражали клетки $(0.5 \times 10^6 \text{ клеток/3 см}^2, \text{ инку-}$ бировали в стандартных условиях (+37 °C, 5% CO₂) до наступления цитопатического действия (ЦПД). Для препаративного наращивания вируса использовали культуральные чашки диаметром 15 см. Инфицированные клетки после наступления 100% ЦПД собирали, концентрировали низкоскоростным центрифугированием (2000 об/10 мин), ресуспендировали в буфере (0,01 M трис-HCl pH 8,0, 0,01 M NaCl, 5 мМ ЭДТА), подвергали трем циклам замораживания-оттаивания и центрифугировали при 5000 об/10 мин, осадок удаляли. Аденовирус из супернатанта очищали методом ультрацентрифугирования в градиенте плотности хлористого цезия (в ступенчатом (CsCl с показателем преломления 1,355, 1,365 и 1,375) и равновесном градиенте (CsCl с показателем преломления 1,365).

Анализ полиморфизма длин рестрикционных фрагментов (ПДРФ). Геномную ДНК очищенного вируса выделяли с использованием набора Wizard Genomic DNA Purification Kit (Promega, США). ДНК (1 мкг) гидролизовали рестриктазами Cfr41I, XagI и XhoI (Thermo, США) и анализировали методом электрофореза в агарозном геле, используя более длительную выдержку для детектирования низкомолекулярных фрагментов. Анализ ПДРФ *in silico* проводили с помощью программы Geneious Prime (Biomatters, Новая Зеландия).

Секвенирование и сборка генома. Приготовление библиотеки выполняли с применением набора КАРА НурегРlus Kit (F. Hoffmann-La Roche Ltd., Швейцария) согласно протоколам производителя, проверку качества и размера библиотек проводили с помощью электрофореза на чипах High Sensitivity DNA Chips 2100 Bioanalyzer System (Agilent, США), секвенирование — на приборе NextSeq 500/550 (Illumina, США), используя картриджи Mid Output 300 cycles. Для сборки прочтений *de novo* и по референсным последовательностям использовали пакет программ CLC Genomic Workbench v. 21 (Qiagen, США).

Таблица 1. Штаммы HAdV-55, используемые для геномного анализа с целью изучения распространения вируса, региональной персистенции и генетической изменчивости

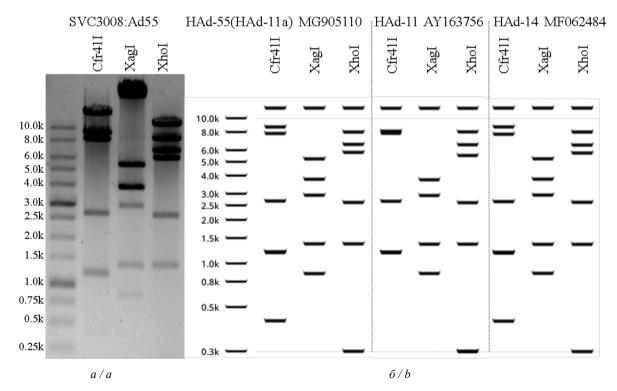
Table 1. HAdV-55 strains used for genomic analysis in order to study the spread of the virus, regional persistence and genetic variability

Номер в базе NCBI GenBank Accession Number	Место выделения Country	Год выделения Year of isolation	Номер в базе NCBI GenBank Accession Number	Место выделения Country	Год выделения Year of isolation
MN654381.1	Египет / Egypt	2000	PP002035.1	Китай / China	2018
MN654383.1	Египет / Egypt	2000	PP002036.1	Китай / China	2018
MN654385.1	Египет / Egypt	2000	PP002037.1	Китай / China	2018
MN654380.1	Египет / Egypt	2000	PP002043.1	Китай / China	2018
MN654382.1	Египет / Egypt	2002	PP002044.1	Китай / China	2018
MN654390.1	Египет / Egypt	2005	PP002045.1	Китай / China	2018
MN654391.1	Египет / Egypt	2005	PP002046.1	Китай / China	2018
MN654386.1	Египет / Egypt	2007	MH256653.1	Китай / China	2018
MN654384.1	Египет / Egypt	2008	MH256655.1	Китай / China	2018
MN654387.1	Египет / Egypt	2009	MH256657.1	Китай / China	2018
MG905110.1	Испания / Spain	1969	MH256654.1	Китай / China	2018
FJ643676.1	Китай / China	2006	MH256656.1	Китай / China	2018
JX123027.1	Китай / China	2010	PP002040.1	Китай / China	2018
JX491639.1	Китай / China	2011	MT806174.1	Китай / China	2019
JX123028.1	Китай / China	2011	MT806175.1	Китай / China	2019
MK123979.1	Китай / China	2011	MT806170.1	Китай / China	2019
KJ883522.1	Китай / China	2011	MT806172.1	Китай / China	2019
KP279748.1	Китай / China	2012	MT806173.1	Китай / China	2019
KP896478.1	Китай / China	2012	MT806171.1	Китай / China	2019
JX123029.1	Китай / China	2012	OM714808.1	Китай / China	2020
KC857701.1	Китай / China	2012	OP375144.1	Китай / China	2021
KP896483.1	Китай / China	2013	MN654388.1	Сингапур / Singapore	2005
KJ883520.1	Китай / China	2013	MN654389.1	Сингапур / Singapore	2005
KJ883521.1	Китай / China	2013	MN654394.1	CIIIA / USA	1976
KP896484.1	Китай / China	2013	MN654392.1	CIIIA / USA	1997
MK123980.1	Китай / China	2013	MT513753.1	CIIIA / USA	2006
MK123981.1	Китай / China	2013	MN654395.1	CIIIA / USA	2020
KF908851.1	Китай / China	2013	MN654375.1	Южная Корея / South Korea	2009
MK886831.1	Китай / China	2015	MN654376.1	Южная Корея / South Korea	2009
KX289874.1	Китай / China	2015	MN654377.1	Южная Корея / South Korea	2009
KY070248.1	Китай / China	2016	MN654378.1	Южная Корея / South Korea	2009
KY780931.1	Китай / China	2016	MN654379.1	Южная Корея / South Korea	2009
KY780932.1	Китай / China	2016	KX494979.1	Южная Корея / South Korea	2016
KY780933.1	Китай / China	2016	KY471318.1	Южная Корея / South Korea	2017
PP002039.1	Китай / China	2018	KY471322.1	Южная Корея / South Korea	2017
PP002041.1	Китай / China	2018	KY471319.1	Южная Корея / South Korea	2017
MN052861.1	Китай / China	2018	KY471320.1	Южная Корея / South Korea	2017
MK123978.1	Китай / China	2018	KY471321.1	Южная Корея / South Korea	2017
PP002033.1	Китай / China	2018	KY471323.1	Южная Корея / South Korea	2017
PP002034.1	Китай / China	2018	MW053454.1	Южная Корея / South Korea	2019
PP002038.1	Китай / China	2018	MN654393.1	Япония / Japan	2012
PP002032.1	Китай / China	2018			

Для уточнения последовательностей гомополимеров применяли секвенирование по Сэнгеру, используя наборы BDT UltraSeq HP Kit (SenseCare Bio, Китай), электрофорез проводили в капиллярах 50 см, в геле POP-7 на приборе 3500 Genetic Analyzer (Applied Biosystems, CIIIA).

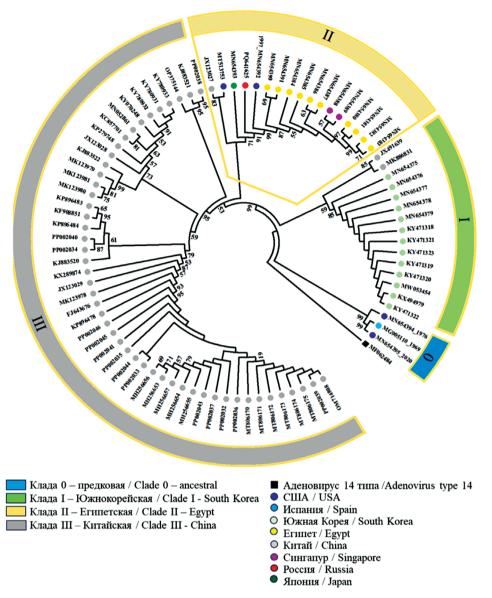
Сравнительный анализ. В сравнительный анализ включили 83 полных генома HAdV-55 (табл. 1) и геном HAdV-14 (МF062484). Выравнивание геномных последовательностей выборки изолятов, построение филогенетического древа Neighbor-joining, расчет ANI (average nucleotide identity, средней нуклеотидной идентичности) выполняли с помощью модуля Whole Genome Alignment пакета программ CLC Genomic Workbench v. 21 (Qiagen, США). Для визуализации древа использовали программу MEGA11 [17]. Трансляцию рамок считывания и выравнивание аминокислотных последовательностей выполняли в программе MEGA11 [17].

Результаты


В выборке респираторных образцов, поступивших из стационаров Москвы в сезоне 2021–2022 гг., 12 содержали HAdV по данным ПЦР-РВ. Образцы проанализировали по значениям вирусной нагрузки и множественности инфекции. Один из образцов (БАЛ пациента, госпитализированного с пневмонией), отличавшийся высоким показателем нагрузки ДНК HAdV

(значение порогового цикла, Ct = 12,3) и отсутствием сопутствующей инфекции другими респираторными вирусами, использовали для изоляции HAdV.

Выделенный аденовирус идентифицировали как HAdV-55 на основании данных секвенирования, депонировали в Государственной коллекции вирусов Института вирусологии им. Д.И. Ивановского ФГБУ «НИЦЭМ им. Н.Ф. Гамалеи» Минздрава России под номером SCV3008:Ad55, геномные данные зарегистрировали в GenBank (регистрационный номер PQ641625).


Анализ ПДРФ ДНК изолята выявил следующие фрагменты: Cfr41I (12894, 8674, 7768, 2664, 1194, 1181 и 403 п.н.), XhoI (10335, 8005, 6544, 5761, 2628, 1355 и 150 п.н.) и ХадІ (20615, 5219, 3789, 2944, 1359 и 852 п.н.). На рис. 1 (а) представлены наиболее яркие из них. Сопоставление с данными *in silico* для изолятов HAdV-55 (МG905110), HAdV-11 (AY163756) и HAdV-14 (МF062484) (рис. 1 б) подтверждает сходство рестрикционных фрагментов изолятов SCV3008:Ad55 и HAdV-55 (МG905110) и подчеркивает, что в рекомбинанте HAdV-55 основу генома составляют гены HAdV-14.

Сходство с HAdV-14 показал и расчет ANI между геномами HAdV-55 выборки, представленными в табл. 1, SCV3008:Ad55 и HAdV-14 (MF062484). Значение ANI между HAdV-55 и HAdV-14 составило 98,7478—98,9411, а между геномами HAdV-55—99,6546—100,000.

Рис. 1. Полиморфизм длин рестрикционных фрагментов, полученных с рестриктазами Cfr41I, XagI и XhoI. a – для ДНК изолята SCV3008:Ad55 *in vitro*; δ – для ДНК штаммов HAd-55, HAd-11 и HAd-14 *in silico*.

Fig. 1. Restriction fragment length polymorphisms (RFLPs) using Cfr41I, XagI, and XhoI restriction enzymes. *a* – DNA of the SCV3008 isolate *in vitro*; *b* – DNA of the HAd-55, HAd-11 and HAd-14 strains *in silico*.

Рис. 2. Филогенетическое древо Neighbor-joining, построенное на основе полных геномов 83 изолятов HAd-55, представленных в табл. 1, и генома изолята SCV3008:Ad55 (PQ641625).

Клады 0-ІІІ охарактеризованы в легенде. МҒ062484 – изолят НАd-14, представляет внешнюю группу.

Fig. 2. Neighbor-joining phylogenetic tree constructed based on the complete genomes of 83 HAd-55 isolates presented in Table 1, and the genome of the SCV3008:Ad55 isolate (PQ641625).

Clades 0-III are characterized in the legend. MF062484 - HAd-14 isolate, represents an outgroup.

В филогенетический анализ включили изоляты HAdV-55, выделенные в 8 странах в 1969—2022 гг. (табл. 1). Древо гомологии представлено на рис. 2. Как видно из рисунка, геномы сформировали 4 клады. В базовую кладу «0» вошли наиболее ранние изоляты MG905110 (Испания, 1969), MN654394 (США, 1976) и изолят MN654395 (США, 2020). Кладу «І» образовали 13 изолятов из Южной Кореи и два изолята из Китая (2011 и 2015 гг.). Клада «ІІ», основу которой составили изоляты из Египта (12 изолятов), была наиболее разнообразна по представленности стран. В нее вошли изоляты из Сингапура (MN654388 и MN654389, 2005), Японии (MN654393, 2012),

США (MN654392, 1997; MT513753, 2006), Китая (JX123027, 2010) и выделенный нами изолят SCV3008:Ad55. Самую многочисленную кладу «III» образовали изоляты Китая 2006–2021 гг.

В кладе «II» максимально близким изоляту SCV3008:Ad55 по значению ANI (99,9396) был изолят из Японии (MN654393). Отличия между геномами SCV3008:Ad55 и MN654393 выявили как в нетранслируемых областях генома, так и в генах структурных и неструктурных белков (табл. 2). Выявленные замены сопоставили с последовательностями других геномов выборки. Отметим, что сравнение областей ITR и ближайших к ним было возможно не для всех

Таблица 2. Характеристика замен в геноме изолята SVC308:Ad55

Table 2. Characterization of substitutions in the genome of isolate SVC308-Ad55

Название области генома/CDS Name of the region of the genome/CDS	Замена в геноме SVC308:Ad55 относительно генома WPAFB415 Substitution in the SVC308:Ad55 genome relative to the WPAFB415	Встречаемость мутации Mutation frequency	Замены в последовательности белка Substitutions in amino acid sequence
	C134T**	Clade Egypt*	
	A445G	SVC308:Ad55	
Hетранслируемые области / Untranslated regions	T3437C	SVC308:Ad55	
onumbure regions	A3924G	SVC308:Ad55	
	G34619T***	SVC308:Ad55	
pIX 14,2 кДа / 14.2 kDa	C3536T	SVC308:Ad55	
pIVa2 50,9 кДа / 50.9 kDa	T4656C	WPAFB415	
128,9 кДа ДНК-полимераза /	C6707T	SVC308:Ad55	
128.9 kDa DNA polymerase	T6764 A	WPAFB415	Lys→Asp
-TD 72 4 - H- / 72 4 LD-	G8779 A	SVC308:Ad55	
рТР 73,4 кДа / 73.4 kDa	C8815T	Clade Egypt*	
L1 52/55K 43,9 кДа / 43,9 kDa	C11734T	SVC308:Ad55	
L1 pIIIa 65,6 кДа / 65.6 kDa	G13349 A	Clade Egypt*	
70 T W (60 T) D	T13787 A	SVC308:Ad55	Thr→Ala
L2 пентон 62,5 кДа / 62,5 kDa penton protein	G14203 A	SVC308:Ad55	
	T16315C	WPAFB415	Glu→Leu
L2 pV 40,1 кДа / 40.1 kDa	G16530C	WPAFB415	
E2A 58,3 кДа ДНК-связывающий белок / 58.3 kDa DNA-binding protein	G22776 A	SVC308:Ad55	
L4 22K 21,6 кДа / 21.6 kDa	C26083T	Clade Egypt*	His→Tyr
L4 pVIII 25 кДа / 25 kDa	A26918 G	WPAFB415	
E3 18,5 kDa / 18.5 kDa	T28096 G	SVC308:Ad55	

Примечание. * - кроме MT513753, MN654393, JX123027; ** - область левого ITR есть только в 65 геномах из 85; *** - область генома перед правым ITR присутствует только в 75 геномах из 85.

Note. * - except for MT513753, MN654393, JX123027; ** - the left ITR region is found in only 65 of the 85 genomes; *** - the region of the genome in front of the right ITR is present in only 75 out of 85 genomes.

геномов. Из выявленных замен 4 были характерны для большинства изолятов клады «II», 4 являлись уникальными для генома японского изолята, 12 замен отличали изолят SCV3008:Ad55.

Замены в 4 рамках считывания были несинонимичными. Мутация в пептоне (Thr29Ala) была уникальна для изолята SCV3008:Ad55. Замены в ДНК-полимеразе (Asp566Lys) и в белке pV (Leu105Glu) отличали японский изолят MN654393. Мутация в белке L4 22K (His162Tyr) встречалась у 14 изолятов клады «II», включая SCV3008:Ad55 (табл. 2).

При анализе геномов мы обратили внимание на неоднородность размеров поли-А/поли-Т-последовательностей в межгенных областях (табл. 3). Размеры областей 2–6, отмеченные в геноме SCV3008:Ad55, были характерны для многих геномов выборки HAdV-55. Область 1 с заменой A6G являлась уникальной для SCV3008:Ad55. Последовательности гомополимеров в геномах аденовирусов, называемые также микросателлитами, обратили на себя внимание исследователей при расследовании вспышек адено-

вирусной инфекции со смертельными исходами в воинских коллективах США в 2006–2007 гг. Полиморфизм длин локусов микросателлитов стал маркером высокого разрешения для отнесения HAdV-14 к одной вспышке [18]. Мы провели сравнение локусов микросателлитов у изолятов клады II «Egypt», включившей 17 изолятов разных континентов. Из данных табл. 4 следует, что большинство изолятов клады было сходно по размеру микросателлитов всех 6 локусов. Максимальное количество локусов (4) отличало геномы изолятов из Японии (МN654393) и России (SCV3008:Ad55), по 3 локусам отличался геном единственного изолята из Китая в кладе II (JX123027), по двум разным локусам – изоляты из США (МN654392, 1997; МТ513753, 2006), по одному изоляты из Сингапура (MN654388 и MN654389). Из 10 египетских изолятов в кладе II три имели по одному локусу отличий. Таким образом, при высоком консерватизме геномов HAdV-55 локусы микросателлитов действительно позволяют различить геномы вирусов в пределах одной клады.

Таблица 3. Области повторов в геномах выборки аденовирусов человека 55-го типа **Table 3.** Regions of repeats in the genomes of a sample of adenoviruses belonging to genotype 55

N	Положение по геному PQ641625 / Соседние OPC The position according to PQ641625 genome / Neighboring ORS	Изолят Isolate	Число нуклеотидов в повторе The number of nucleotides in the repeat	Количество изо- лятов Number of isolates
	genome / reignoring ores	MF062484/China/2010*	T 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1
		OP375144/China/2021		3
		MW053454/China/2023		1
		PQ641625/Russia/2022	T	1
1	3918–3933 bp / pIX; pIVa2	MN654393/Japan/2012	TAAAAAAAAAAA T	1
		MN654378/S.Korea/2009	TAAAAAAAAAAAAT	24
		MN654392/USA/1997	TAAAAAAAAAAAT	5
		MN654394/USA/1976	TAAAAAAAAAAT	1
		FJ643676/China/2011	TAAAAAAAT	48
		MF062484/China/2010*	ATTTTTTTTTTTTTTT	
		MN654395/USA/2020	ATTTTTTTTTTTTTT	1
		MW053454/China/2023	ATTTTTTTTTTTTTC	3
		KY471322/S.Korea/2017	ATTTTTTTTTTTTG	9
2	10651–10664 bp / pTP; L1	PP002032/China/2018	ATTTTTTTTTTTTG	21
		PQ641625/Russia/2022	ATTTTTTTTTTG	7
		MN654394/USA/1976	ATTTTTTTTTG	37
		MK123980/China/2013	ATTTTTTTTTG	6
		KP896484/China/2013	ATTTTTG	1
		MF062484/China/2010*	T	1
	13620–13630 bp/L1 pIIIa; L2 penton	PP002034/China/2018	TAAAAAAAAA T	1
3	[polyA_signal_sequence (aaataaa)	MN654388/Singapore/2005	TAAAAAAAAAT	16
	13627–13633 bp]	PQ641625/Russia/2022	TAAAAAAAAT	66
		PP002040/China/2018	TAAAAAAAT	1
		MF062484/China/2010*	C D D D D D D D D D D D D D D D D D D D	
		MK123978/China/2018	GAAAAAAAAG	1
4-	17222 17224 b / L2 X. L2 XII	PQ641625/Russia/2022	GAAAAAAAAA - G	51
4a	17323–17334 bp / L2 pX; L3 pVI	KY070248/China/2016	GAAAAAAAAG	20
		MN654394/USA/1976	GAAAAAAAG	12
		KP896484/China/2013	GAAAAAAG	1
		MF062484/China/2010*	T A A A A A A A A A A - T	
11.	17341–17352 bp / L2 pX; L3 pVI	KX494979/S.Korea/2016	TAAAAAAAAAT	5
4b	[polyA_signal_sequence (aataaa) 17339–17344 bp]	PQ641625/Russia/2022	TAAAAAAAAA - T	75
		KH289874/China/2015	TAAAAAAAAT	5
		MF062484/China/2010*		
		MT513753/USA/2006	CTTTTTTTTTTTT	1
		MK123981/China/2013	CTTTTTTTTTTT-A	3
5	29474–29486 bp / E3 20.2 kDa; E3	OM714808/China/2020	CTCTTTTTTTTTA	1
3	10.3 kDa	PQ641625/Russia/2022	CITITITITITA	17
		KP896483/China/2013	CITTTTTTTTTA	37
		JX123029/China/2012	CITTTTTTTTA	25
		KP896484/China/2013	CITITIT	1
		MF062484/China/2010*	TAAAAAAC	1
_	34006 – 34016 bp / E4 ORF2; E4	MT513753/USA/2006	TAAAAAAAAC	3
6	ORF1	PQ641625/Russia/2022	TAAAAAAAA C	28
		JX123029/China/2012	TAAAAAAA C	53

Примечание. * – предковый геном Human adenovirus 14.

Note. * – the ancestral genome of Human adenovirus 14.

Таблица 4. Размер локусов микросателлитов в геномах изолятов клады II «Egypt» **Table 4.** Size of microsatellite loci in the genomes of clade II «Egypt» isolates

Локус Locus	Изолят Isolate	Размер гомополимера (нт) Homopolymer size (nt)	Локус Locus	Изолят Isolate	Размер гомополимера (нт) Homopolymer size (nt)
1	Большинство* / Most	A (13)	4a, 4b	Большинство / Most	A (10); A (10)
	MN654380 (Egypt 2000)	A (12)		JX123027 (China 2010)	A(10); A(11)
	MN654392 (USA 1997)	A (12)		MN654392 (USA 1997)	A(9); A(10)
	MN654393 (Japan 2012)	A (14)	5	Большинство / Most	T (9)
	PQ641625 (Russia 2022)	A (13) G (1)		MN654393 (Japan 2012)	T (11)
2	Большинство / Most	T (11)		PQ641625 (Russia 2022)	T (11)
	MN654393 (Japan 2012)	T (12)		JX123027 (China 2010)	T (10)
	PQ641625 (Russia 2022)	T (12)		MT513753 (USA 2006)	T (14)
	JX123027 (China 2010)	T (12)	6	Большинство / Most	A(8)
3	Большинство / Most	A (10)		MN654393 (Japan 2012)	A (10)
	MN654386 (Egypt 2007)	A (11)		PQ641625 (Russia 2022)	A (10)
	MN654387 (Egypt 2009)	A (11)		MT513753 (USA 2006)	A(11)
	MN654388 (Singapore 2005)	A (11)			
	MN654389 (Singapore 2005)	A(11)			

Примечание. * – в кладе II «Едурt» 17 изолятов.

Note. * - Clade II «Egypt» contains 17 isolates.

Обсуждение

В представленной работе впервые описан геном изолята HAdV-55 SCV3008:Ad55, выделенного на территории РФ. Отметим, что молекулярно-эпидемиологические геномные исследования аденовирусов в РФ, выполненные ранее, являются единичными и посвящены изучению *M. caesari* HAdV, возбудителей респираторных инфекций у детей [19]. Сбор сравнительной информации для геномных исследований затруднен в связи с низкой степенью внедрения методов генотипирования в лабораторную диагностику аденовирусной инфекции.

В России молекулярно-генетический подход, одобренный с 2010 г., применяют для эпидемиологического мониторинга аденовирусной инфекции и идентификации возбудителя до семейства Adenoviridae в Референс-центре по диагностике гриппа и ОРВИ на базе НИИ гриппа им. А.А. Смородинцева, в Центре экологии и эпидемиологии гриппа НИЦЭМ им. Н.Ф. Гамалеи и в опорных базах Роспотребнадзора. На особом контроле находятся аденовирусные инфекции у детей, которые также подлежат молекулярной диагностике согласно клиническим рекомендациям². Однако генотипирование HAdV не входит в перечень методов лабораторной диагностики.

ECDC (European Centre for Disease Prevention and Control) не проводит планового наблюдения аденовирусной инфекции и фиксирует только вспышки забо-

²Клинические рекомендации (протокол лечения) оказания медицинской помощи детям больным аденовирусной инфекцией; 2013. Доступно по: http://niidi.ru/dotAsset/69f7f879-9765-4634-a621-8792acf587b7.pdf

левания, тогда как CDC (Centers for Disease Control and Prevention, США) разработал рекомендации по идентификации HAdV на основе амплификации нуклеиновых кислот и создал Национальную систему отчетности по типам аденовирусов (The National Adenovirus Type Reporting System, NATRS). По сведениям NATRS, в 2017-2023 гг. HAdV 6 генотипов являлись наиболее распространенными в США, среди которых HAdV-7 и HAdV-14 вида M. blackbeardi coставили 13,4 и 7,8% соответственно (https://www.cdc. gov/adenovirus/hcp/outbreaks/index.html). Японская национальная система эпидемиологического надзора за инфекционными заболеваниями также проводит генотипирование аденовирусов, отмечая среди преобладающих *M. blackbeardi* HAdV-3, 7, 11, 34, 35, а среди минорных 14, 16, 55, 66, 68, 79 [20]. СДС Китая контролирует грипп и ОРВИ, но не публикует в открытой печати отчеты по генотипированию вирусов [21]. Таким образом, из национальных систем контроля учет HAdV-55 проводит только система эпиднадзора Японии.

Анализ научных публикаций за 2012—2025 гг., размещенных в PubMed, показал, что из 48 статей, упоминающих в ключевых словах HAdV-55, 39 (81%) опубликовано исследователями из Китая, 7 — из Южной Кореи, по одной — из США и Сенегала. Такое соотношение публикаций подтверждает эндемичность HAdV-55 для Китая и Южной Кореи. Следует отметить, что из публикаций Южной Кореи только в двух представлено исследование инфекций HAdV-55 среди гражданского населения, в остальных описаны вспышки ОРВИ, вызванной HAdV-55, среди воинского контингента [22]. Тему

НАdV-55-инфекции среди военных продолжает публикация из США [23], посвященная анализу изолята вируса МW053454, выделенного от американского военнослужащего, находившегося в Южной Корее в 2019 г. Изолят МW053454 отличался от южнокорейского изолята КХ494979 2016 г. одной синонимичной заменой. В нашем исследовании оба изолята вошли в кладу I «South Korea». В Сенегале с 2012 по 2015 г. у пациентов с ОРВИ М. blackbeardi HAdV выявили в 9 случаях, среди которых отмечены HAdV-7, HAdV-55 и HAdV-11 [24]. Приведенные данные свидетельствуют о том, что генотипирование HAdV постепенно входит в лабораторную практику.

Учитывая вышесказанное, для проведения сравнительного исследования генома изолята SCV3008: Ad55 мы воспользовались данными GenBank, собрав выборку из 83 изолятов 1969–2022 гг. из 7 стран. Анализ выборки показал высокое сходство геномов HAdV-55, достигающее по показателю ANI 99,7-100%, что согласуется с данными других исследований, выполненных на меньшем количестве изолятов [25]. Вместе с тем филогенетический анализ позволил разделить геномы выборки на клады, что свидетельствует о наличии гетерогенности даже при высокой гомологии. Клады I и III соответствовали географической принадлежности изолятов и показали эпидемическую связь как между изолятами из Китая, так и изолятами из Южной Кореи. Изоляты из Египта 2000–2009 гг., страны, удаленной от эндемичных по HAdV-55 территорий, кластеризовались с изолятами из 5 государств, в том числе Китая, что свидетельствует о распространении HAdV-55, чему способствуют процессы глобализации. Следует отметить, что в кладу II вошли преимущественно изоляты от гражданского населения. Исключение составили изоляты из Сингапура и Японии, полученные из образцов военных, заболевших ОРВИ [25].

Сравнительный геномный анализ выявил отличия изолята SVC3008:Ad55, а именно 12 точковых мутаций, распределенных по всему геному, из которых несинонимичной была замена в рамке считывания пентона L2 62,5 кДа, приводящая к замене Т29А в N-конце белковой последовательности. Поскольку замена консервативна, она не сказывается на амфипатических свойствах N-концевой спирали белка и на способности мотива PPRY (42–45 а.о.) взаимодействовать с доменами WW клеточных убиквитинлигаз, что обеспечивает проникновение вируса в эукариотическую клетку, определяющее его инфекционность [26].

Дополнительную информацию о разнообразии близкородственных геномов изолятов клады II дал анализ полиморфизма длин микросателлитов (гомополимеров) 6 локусов в нетранслируемых областях. Из 17 изолятов клады 10 имели отличие хотя бы по одному локусу. Изоляты из Японии и России отличались от других изолятов клады по 4 локусам микросателлитов. Такой подход позволил различить даже изоляты из Египта внутри двух регионов: Александрии (2000–2002) и Каира (2005–2009).

Заключение

Сравнительное геномное исследование изолятов HAdV-55, появившегося в результате рекомбинации HAdV-14 и HAdV-11, показало медленное накопление мутаций с 1969 г. как в транслируемых, так и в нетранслируемых областях, позволило выявить уникальные замены нового изолята SVC3008:Ad55. Полученная геномная информация заложила основу для разработки диагностических наборов и дальнейшего мониторинга HAdV-55, вызывающего инфекции, осложненные бронхопневмонией. В то же время, поскольку аденовирусы подвержены рекомбинационной изменчивости, а горячие точки рекомбинации множественны (гены пентона, гексона, филамента (фибера), Е1, Е3 и Е4) [27], именно полногеномное секвенирование эффективно в мониторинге и молекулярно-эпидемиологическом анализе возбудителей аденовирусной инфекции.

ЛИТЕРАТУРА

- Lynch J.P. 3rd, Kajon A.E. Adenovirus: epidemiology, global spread of novel serotypes, and advances in treatment and prevention. *Semin. Respir. Crit. Care Med.* 2016; 37(4): 586–602. https://doi. org/10.1055/s-0036-1584923
- Coleman K.K., Wong C.C., Jayakumar J., Nguyen T.T., Wong A.W.L., Yadana S., et al. Adenoviral infections in Singapore: Should new antiviral therapies and vaccines be adopted? *J. Infect. Dis.* 2020; 221(4): 566–77. https://doi.org/10.1093/infdis/jiz489
- Xu W., Xu Z., Huang L., Qin E.Q., Zhang J.L., Zhao P., et al. Transcriptome sequencing identifies novel immune response genes highly related to the severity of human adenovirus type 55 infection. *Front. Microbiol.* 2019; 10: 130. https://doi.org/10.3389/fmicb.2019.00130
- Kajon A.E., Lamson D.M., St. George K. Emergence and re-emergence of respiratory adenoviruses in the United States. *Curr. Opin. Virol.* 2019; 34: 63–9. https://doi.org/10.1016/j.coviro.2018.12.004
- Dhingra A., Hage E., Ganzenmueller T., Böttcher S., Hofmann J., Hamprecht K., et al. Molecular Evolution of Human Adenovirus (HAdV) Species C. Sci Rep. 2019; 9(1): 1039. https://doi.org/10.1038/s41598-018-37249-4
- Scott M.K., Chommanard C., Lu X., Appelgate D., Grenz L., Schneider E., et al. Human adenovirus associated with severe respiratory infection, Oregon, USA, 2013–2014. *Emerg. Infect. Dis.* 2016; 22(6): 1044–51. https://doi.org/10.3201/eid2206.151898
- Hierholzer J.C., Pumarola A., Rodriguez-Torres A., Beltran M. Occurrence of respiratory illness due to an atypical strain of adenovirus type 11 during a large outbreak in Spanish military recruits. *Am. J. Epidemiol.* 1974; 99(6): 434–42. https://doi.org/10.1093/oxford-journals.aje.a121632
- Li Q.G., Hambraeus J., Wadell G. Genetic relationship between thirteen genome types of adenovirus 11, 34, and 35 with different tropisms. *Intervirology*. 1991; 32(6): 338–50. https://doi. org/10.1159/000150218
- Yang Z., Zhu Z., Tang L., Wang L., Tan X., Yu P., et al. Genomic analyses of recombinant adenovirus type 11a in China. *J. Clin. Microbiol.* 2009; 47(10): 3082–90. https://doi.org/10.1128/JCM.00282-09
- Seto D., Chodosh J., Brister J.R., Jones M.S. Using the whole-genome sequence to characterize and name human adenoviruses. *J. Virol.* 2011; 85(11): 5701–2. https://doi.org/10.1128/JVI.00354-11
- Seto D., Jones M.S., Dyer D.W., Chodosh J. Characterizing, typing, and naming human adenovirus type 55 in the era of whole genome data. *J. Clin. Virol.* 2013; 58(4): 741–2. https://doi.org/10.1016/j.jcv.2013.09.025
- Centers for Disease Control and Prevention (CDC). Civilian outbreak of adenovirus acute respiratory disease South Dakota, 1997.
 MMWR Morb. Mortal. Wkly Rep. 1998; 47(27): 567–70.
- Kajon A.E., Mistchenko A.S., Videla C., Hortal M., Wadell G., Avendaño L.F. Molecular epidemiology of adenovirus acute lower respiratory infections of children in the south cone of South America (1991–

- 1994). J. Med. Virol. 1996; 48(2): 151–6. https://doi.org/10.1002/(sic i)1096-9071(199602)48:2%3C151::aid-jmv6%3E3.0.co;2-8
- Salama M., Amitai Z., Nutman A., Gottesman-Yekutieli T., Sherbany H., Drori Y., et al. Outbreak of adenovirus type 55 infection in Israel. *J. Clin. Virol.* 2016; 78: 31–5. https://doi.org/10.1016/j.jcv.2016.03.002
- Jing S., Zhang J., Cao M., Liu M., Yan Y., Zhao S., et al. Household transmission of human adenovirus type 55 in case of fatal acute respiratory disease. *Emerg. Infect. Dis.* 2019; 25(9): 1756–8. https:// doi.org/10.3201/eid2509.181937
- Бурцева Е.И., Панова А.Д., Колобухина Л.В., Игнатьева А.В., Кириллова Е.С., Бреслав Н.В. и др. Эпидемический сезон 2021–2022 годов. Частота ко-инфекции респираторными вирусными патогенами. Эпидемиология и инфекционные болезни. 2023; 28(2): 67–77. https://doi.org/10.17816/EID321873
- Tamura K., Stecher G., Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. *Mol. Biol. Evol.* 2021; 38(7): 3022–7. https://doi.org/10.1093/molbev/msab120
- Houng H.S., Lott L., Gong H., Kuschner R.A., Lynch J.A., Metzgar D. Adenovirus microsatellite reveals dynamics of transmission during a recent epidemic of human adenovirus serotype 14 infection. *J. Clin. Microbiol.* 2009; 47(7): 2243–8. https://doi. org/10.1128/JCM.01659-08
- Kurskaya O.G., Prokopyeva E.A., Dubovitskiy N.A., Solomatina M.V., Sobolev I.A., Derko A.A., et al. Genetic Diversity of the Human Adenovirus C Isolated from Hospitalized Children in Russia (2019-2022). Viruses. 2024; 16(3): 386. https://doi.org/10.3390/v16030386
- Adenovirus infections, 2008 to 2020, Japan. IASR. 2021; 42(4): 67–9.
 Available at: https://id-info.jihs.go.jp/niid/en/iasr/12459-494te.html
- Sun H., Hu W., Wei Y., Hao Y. Review: Drawing on the development experiences of infectious disease surveillance systems around the world. *China CDC Wkly.* 2024; 6(41): 1065–74. https://doi.org/10.46234/ccdcw2024.220
- Ko J.H., Woo H.T., Oh H.S., Moon S.M., Choi J.Y., Lim J.U., et al. Ongoing outbreak of human adenovirus-associated acute respiratory illness in the Republic of Korea military, 2013 to 2018. Korean J. Intern. Med. 2021; 36(1): 205–13. https://doi.org/10.3904/kjim.2019.092
- Hughes J.J., Yang Y., Fries A.C., Maljkovic Berry I., Pollio A.R., Fung C.K., et al. Complete genome sequences of two human adenovirus type 55 isolates from South Korea and the United States. *Microbiol. Resour. Announc.* 2021; 10(5): e01347-20. https://doi. org/10.1128/MRA.01347-20
- Niang M.N., Diop N.S., Fall A., Kiori D.E., Sarr F.D., Sy S., et al. Respiratory viruses in patients with influenza-like illness in Senegal: Focus on human respiratory adenoviruses. *PLoS One*. 2017; 12(3): e0174287. https://doi.org/10.1371/journal.pone.0174287
- Hang J., Kajon A.E., Graf P.C.F., Berry I.M., Yang Y., Sanborn M.A., et al. Human adenovirus type 55 distribution, regional persistence, and genetic variability. *Emerg. Infect. Dis.* 2020; 26(7): 1497–505. https://doi.org/10.3201/eid2607.191707
- Wodrich H., Henaff D., Jammart B., Segura-Morales C., Seelmeir S., Coux O., et al. A capsid-encoded PPxY-motif facilitates adenovirus entry. PLoS Pathog. 2010; 6(3): e1000808. https://doi.org/10.1371/ journal.ppat.1000808
- Wang F., De R., Han Z., Xu Y., Zhu R., Sun Y., et al. High-frequency recombination of human adenovirus in children with acute respiratory tract infections in Beijing, China. *Viruses*. 2024; 16(6): 828. https://doi.org/10.3390/v16060828

REFERENCES

- Lynch J.P. 3rd, Kajon A.E. Adenovirus: epidemiology, global spread of novel serotypes, and advances in treatment and prevention. *Semin. Respir. Crit. Care Med.* 2016; 37(4): 586–602. https://doi. org/10.1055/s-0036-1584923
- Coleman K.K., Wong C.C., Jayakumar J., Nguyen T.T., Wong A.W.L., Yadana S., et al. Adenoviral infections in Singapore: Should new antiviral therapies and vaccines be adopted? *J. Infect. Dis.* 2020; 221(4): 566–77. https://doi.org/10.1093/infdis/jiz489
- Xu W., Xu Z., Huang L., Qin E.Q., Zhang J.L., Zhao P., et al. Transcriptome sequencing identifies novel immune response genes highly related to the severity of human adenovirus type 55 infection. *Front. Microbiol.* 2019; 10: 130. https://doi.org/10.3389/fmicb.2019.00130

- Kajon A.E., Lamson D.M., St. George K. Emergence and re-emergence of respiratory adenoviruses in the United States. *Curr. Opin. Virol*. 2019; 34: 63–9. https://doi.org/10.1016/j.coviro.2018.12.004
- Dhingra A., Hage E., Ganzenmueller T., Böttcher S., Hofmann J., Hamprecht K., et al. Molecular Evolution of Human Adenovirus (HAdV) Species C. Sci Rep. 2019; 9(1): 1039. https://doi.org/10.1038/s41598-018-37249-4
- Scott M.K., Chommanard C., Lu X., Appelgate D., Grenz L., Schneider E., et al. Human adenovirus associated with severe respiratory infection, Oregon, USA, 2013–2014. *Emerg. Infect. Dis.* 2016; 22(6): 1044–51. https://doi.org/10.3201/eid2206.151898
- Hierholzer J.C., Pumarola A., Rodriguez-Torres A., Beltran M. Occurrence of respiratory illness due to an atypical strain of adenovirus type 11 during a large outbreak in Spanish military recruits. *Am. J. Epidemiol.* 1974; 99(6): 434–42. https://doi.org/10.1093/oxfordjournals.aje.a121632
- Li Q.G., Hambraeus J., Wadell G. Genetic relationship between thirteen genome types of adenovirus 11, 34, and 35 with different tropisms. *Intervirology*. 1991; 32(6): 338–50. https://doi. org/10.1159/000150218
- Yang Z., Zhu Z., Tang L., Wang L., Tan X., Yu P., et al. Genomic analyses of recombinant adenovirus type 11a in China. *J. Clin. Microbiol.* 2009; 47(10): 3082–90. https://doi.org/10.1128/JCM.00282-09
- Seto D., Chodosh J., Brister J.R., Jones M.S. Using the wholegenome sequence to characterize and name human adenoviruses. *J. Virol.* 2011; 85(11): 5701–2. https://doi.org/10.1128/JVI.00354-11
- Seto D., Jones M.S., Dyer D.W., Chodosh J. Characterizing, typing, and naming human adenovirus type 55 in the era of whole genome data. *J. Clin. Virol.* 2013; 58(4): 741–2. https://doi.org/10.1016/j. jcv.2013.09.025
- Centers for Disease Control and Prevention (CDC). Civilian outbreak of adenovirus acute respiratory disease South Dakota, 1997. MMWR Morb. Mortal. Wkly Rep. 1998; 47(27): 567–70.
- Kajon A.E., Mistchenko A.S., Videla C., Hortal M., Wadell G., Avendaño L.F. Molecular epidemiology of adenovirus acute lower respiratory infections of children in the south cone of South America (1991–1994). J. Med. Virol. 1996; 48(2): 151–6. https://doi.org/10.1002/ (sici)1096-9071(199602)48:2%3C151::aid-jmv6%3E3.0.co;2-8
- Salama M., Amitai Z., Nutman A., Gottesman-Yekutieli T., Sherbany H., Drori Y., et al. Outbreak of adenovirus type 55 infection in Israel. *J. Clin. Virol.* 2016; 78: 31–5. https://doi. org/10.1016/j.jcv.2016.03.002
- Jing S., Zhang J., Cao M., Liu M., Yan Y., Zhao S., et al. Household transmission of human adenovirus type 55 in case of fatal acute respiratory disease. *Emerg. Infect. Dis.* 2019; 25(9): 1756–8. https:// doi.org/10.3201/eid2509.181937
- Burtseva E.I., Panova A.D., Kolobukhina L.V., Ignatjeva A.V., Kirillova E.S., Breslav N.V., et al. Epidemic season 2021–2022: Frequency of co-infection by respiratory viral pathogens. *Epidemiologiya i infektsionnye bolezni*. 2023; 28(2): 67–77. https://doi.org/10.17816/EID321873 (in Russian)
- Tamura K., Stecher G., Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. *Mol. Biol. Evol.* 2021; 38(7): 3022–7. https://doi.org/10.1093/molbev/msab120
- Houng H.S., Lott L., Gong H., Kuschner R.A., Lynch J.A., Metzgar D. Adenovirus microsatellite reveals dynamics of transmission during a recent epidemic of human adenovirus serotype 14 infection. J. Clin. Microbiol. 2009; 47(7): 2243–8. https://doi. org/10.1128/JCM.01659-08
- Kurskaya O.G., Prokopyeva E.A., Dubovitskiy N.A., Solomatina M.V., Sobolev I.A., Derko A.A., et al. Genetic Diversity of the Human Adenovirus C Isolated from Hospitalized Children in Russia (2019-2022). Viruses. 2024; 16(3): 386. https://doi.org/10.3390/v16030386
- Adenovirus infections, 2008 to 2020, Japan. IASR. 2021; 42(4): 67–9.
 Available at: https://id-info.jihs.go.jp/niid/en/iasr/12459-494te.html
- Sun H., Hu W., Wei Y., Hao Y. Review: Drawing on the development experiences of infectious disease surveillance systems around the world. *China CDC Wkly.* 2024; 6(41): 1065–74. https://doi.org/10.46234/ccdcw2024.220
- Ko J.H., Woo H.T., Oh H.S., Moon S.M., Choi J.Y., Lim J.U., et al. Ongoing outbreak of human adenovirus-associated acute respiratory illness in the Republic of Korea military, 2013 to 2018. Korean J. Intern. Med. 2021; 36(1): 205–13. https://doi.org/10.3904/kjim.2019.092
 Hughes J.J., Yang Y., Fries A.C., Maljkovic Berry I., Pollio A.R.,
- Hughes J.J., Yang Y., Fries A.C., Maljkovic Berry I., Pollio A.R., Fung C.K., et al. Complete genome sequences of two human ad-

- enovirus type 55 isolates from South Korea and the United States. *Microbiol. Resour. Announc.* 2021; 10(5): e01347-20. https://doi.org/10.1128/MRA.01347-20
- Niang M.N., Diop N.S., Fall A., Kiori D.E., Sarr F.D., Sy S., et al. Respiratory viruses in patients with influenza-like illness in Senegal: Focus on human respiratory adenoviruses. *PLoS One*. 2017; 12(3): e0174287. https://doi.org/10.1371/journal.pone.0174287
- 25. Hang J., Kajon A.E., Graf P.C.F., Berry I.M., Yang Y., Sanborn M.A., et al. Human adenovirus type 55 distribution, regional
- persistence, and genetic variability. *Emerg. Infect. Dis.* 2020; 26(7): 1497–505. https://doi.org/10.3201/eid2607.191707
- Wodrich H., Henaff D., Jammart B., Segura-Morales C., Seelmeir S., Coux O., et al. A capsid-encoded PPxY-motif facilitates adenovirus entry. PLoS Pathog. 2010; 6(3): e1000808. https://doi.org/10.1371/journal.ppat.1000808
- Wang F., De R., Han Z., Xu Y., Zhu R., Sun Y., et al. High-frequency recombination of human adenovirus in children with acute respiratory tract infections in Beijing, China. *Viruses*. 2024; 16(6): 828. https://doi.org/10.3390/v16060828

Информация об авторах:

Шеин Даниил Алексеевич – аспирант лаборатории иммунобиотехнологии ФГБУ «НИЦЭМ им. Н.Ф. Гамалеи» Минздрава России, Москва, Россия. E-mail: daniil.schein@yandex.ru; https://orcid.org/0009-0003-3768-9817

Рыжова Наталья Николаевна – канд. биол. наук, старший научный сотрудник лаборатории анализа геномов ФГБУ «НИЦЭМ им. Н.Ф. Гамалеи» Минздрава России, Москва, Россия. E-mail: rynatalia@yandex.ru: https://orcid.org/0000-0001-5361-870X

Кунда Марина Сергеевна – канд. биол. наук, старший научный сотрудник лаборатории анализа геномов ФГБУ «НИЦЭМ им. Н.Ф. Гамалеи» Минэдрава России, Москва, Россия. E-mail: markunda99@gmail.com; https://orcid.org/0000-0003-1945-0397

Ермолова Екатерина Ивановна – канд. биол. наук, старший научный сотрудник лаборатории анализа геномов ФГБУ «НИЦЭМ им. Н.Ф. Гамалеи» Минздрава России, Москва, Россия. E-mail: aksenova16@yandex.ru; https://orcid.org/0000-0002-0437-9404

Ожаровская Татьяна Андреевна – канд. биол. наук, старший научный сотрудник лаборатории иммунобиотехнологии ФГБУ «НИЦЭМ им. Н.Ф. Гамалеи» Минздрава России, Москва, Россия. E-mail: t.ozh@yandex.ru; https://orcid.org/0000-0001-7147-1553

Попова Ольга – младший научный сотрудник лаборатории иммунобиотехнологии ФГБУ «НИЦЭМ им. Н.Ф. Гамалеи» Минздрава России, Москва, Россия. E-mail: olga.popova31@yandex.ru: https://orcid.org/0000-0003-3248-1227

Никитенко Наталья Анатольевна – канд. биол. наук, старший научный сотрудник лаборатории клеточной микробиологии, заведующая медицинским отделом ФГБУ «НИЦЭМ им. Н.Ф. Гамалеи» Минздрава России, Москва, Россия. E-mail: nan-nikitenko@yandex.ru; https://orcid.org/0000-0001-5829-744X

Краснослободцев Кирилл Геннадьевич – научный сотрудник этиологии и эпидемиологии гриппа ФГБУ «НИЦЭМ им. Н.Ф. Гамалеи» Минздрава России, Москва, Россия. E-mail: kkg_87@mail.ru; https://orcid.org/0000-0003-1745-9128

Бурцева Елена Ивановна – д-р мед. наук, заведующая лабораторией этиологии и эпидемиологии гриппа ФГБУ «НИЦЭМ им. Н.Ф. Гамалеи» Минздрава России, Москва, Россия. E-mail: elena-burtseva@yandex.ru; https://orcid.org/0000-0003-2518-6801

Зубкова Ольга Вадимовна — канд. биол. наук, ведущий научный сотрудник лаборатории иммунобиотехнологии ФГБУ «НИЦЭМ им. Н.Ф. Гамалеи» Минздрава России, Москва, Россия. E-mail: olga-zubkova@yandex.ru; https://orcid.org/0000-0001-7893-8419

Воронина Ольга Львовна – канд. биол. наук, доцент, ведущий научный сотрудник – заведующая лабораторией анализа геномов ФГБУ «НИЦЭМ им. Н.Ф. Гамалеи» Минздрава России, Москва, Россия. E-mail: olv550@gmail.com; https://orcid.org/0000-0001-7206-3594

Гинцбург Александр Леонидович – д-р биол. наук, академик РАН, профессор, директор ФГБУ «НИЦЭМ им. Н.Ф. Гамалеи» Минздрава России, Москва, Россия. E-mail: gintsburg@gamaleya.org; https://orcid.org/0000-0003-1769-5059

Участие авторов: Шеин Д.А. – анализ вирусной ДНК, написание рукописи; Рыжова Н.Н., Кунда М.С., Ермолова Е.И. – геномные исследования, биоинформационный анализ, визуализация, написание рукописи; Ожаровская Т.А., Попова О. – накопление, выделение и очистка вируса; Никитенко Н.А., Краснослободцев К.Г. – анализ базы данных образцов, тестированных на аденовирус; Бурцева Е.И. – кураторство базы данных, консультирование по вопросам эпидемиологии; Зубкова О.В. – накопление, выделение и очистка вируса, написание и редактирование рукописи; Воронина О.Л. – методология и дизайн геномного исследования, биоинформационный анализ, написание и научное редактирование рукописи; Гинцбург А.Л. – общее руководство проектом, научное редактирование рукописи.

Поступила 14.04.2025 Принята в печать 12.06.2025 Опубликована онлайн 15.09.2025

Information about the authors:

Daniil A. Shein – Postgraduate Student, Laboratory of genome analysis, National Research Centre of Epidemiology and Microbiology named after honorary academician N.F. Gamaleya of Ministry of Health, Moscow, Russia. E-mail: daniil.schein@yandex.ru; https://orcid.org/0009-0003-3768-9817

Natalia N. Ryzhova – Cand. Sci. (Biol.), Senior Researcher, Laboratory of genome analysis, National Research Centre of Epidemiology and Microbiology named after honorary academician N.F. Gamaleya of Ministry of Health, Moscow, Russia. E-mail: rynatalia@yandex.ru; https://orcid.org/0000-0001-5361-870X

Marina S. Kunda – Cand. Sci. (Biol.), Senior Researcher, Laboratory of genome analysis, National Research Centre of Epidemiology and Microbiology named after honorary academician N.F. Gamaleya of Ministry of Health, Moscow, Russia. E-mail: markunda99@gmail.com; https://orcid.org/0000-0003-1945-0397

Ekaterina I. Ermolova – Cand. Sci. (Biol.), Senior Researcher, Laboratory of genome analysis, National Research Centre of Epidemiology and Microbiology named after honorary academician N.F. Gamaleya of Ministry of Health, Moscow, Russia. E-mail: aksenova16@yandex.ru; https://orcid.org/0000-0002-0437-9404

Tatiana A. Ozharovskaia – Cand. Sci. (Biol.), Senior Researcher, Immunobiotechnology laboratory, National Research Centre of Epidemiology and Microbiology named after honorary academician N.F. Gamaleya of Ministry of Health, Moscow, Russia. E-mail: t.ozh@yandex.ru; https://orcid.org/0000-0001-7147-1553

Olga Popova – junior researcher, Immunobiotechnology laboratory, National Research Centre of Epidemiology and Microbiology named after honorary academician N.F. Gamaleya of Ministry of Health, Moscow, Russia. E-mail: olga.popova31@yandex.ru; https://orcid.org/0000-0003-3248-1227

Natalia A. Nikitenko – Cand. Sci. (Biol.), Senior Researcher, Head of Medical Department, National Research Centre of Epidemiology and Microbiology named after honorary academician N.F. Gamaleya of Ministry of Health, Moscow, Russia. E-mail: nan-nikitenko@yandex.ru; https://orcid.org/0000-0001-5829-744X

ОРИГИНАЛЬНЫЕ ИССЛЕДОВАНИЯ

Kirill G. Krasnoslobodtsev – researcher, Influenza etiology and epidemiology laboratory, National Research Centre of Epidemiology and Microbiology named after honorary academician N.F. Gamaleya of Ministry of Health, Moscow, Russia. E-mail: kkg_87@mail.ru; https://orcid.org/0000-0003-1745-9128

Elena I. Burtseva – Dr. Sci. (Medicine), Head, Influenza etiology and epidemiology laboratory, National Research Centre of Epidemiology and Microbiology named after honorary academician N.F. Gamaleya of Ministry of Health, Moscow, Russia. E-mail: elena-burtseva@yandex.ru; https://orcid.org/0000-0003-2518-6801

Olga V. Zubkova — Cand. Sci. (Biol.), Leading Researcher, Immunobiotechnology laboratory, National Research Centre of Epidemiology and Microbiology named after honorary academician N.F. Gamaleya of Ministry of Health, Moscow, Russia. E-mail: olga-zubkova@yandex.ru; https://orcid.org/0000-0001-7893-8419

Olga L. Voronina – Cand. Sci. (Biol.), Assistant Professor, Leading Researcher, Head of Laboratory of genome analysis, National Research Centre of Epidemiology and Microbiology named after honorary academician N.F. Gamaleya of Ministry of Health, Moscow, Russia. E-mail: olv550@gmail.com; https://orcid.org/0000-0001-7206-3594

Alexander L. Gintsburg – Dr. Sci. (Biol.), RAS academician, professor, Director, National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaley» of Ministry of Health of Russia, Moscow, Russia. E-mail: gintsburg@gamaleya.org; https://orcid.org/0000-0003-1769-5059

Contribution: Shein D.A. – analysis of viral DNA, manuscript writing; Ryzhova N.N., Kunda M.S., Ermolova E.I. – genomic research, bioinformatics analysis, visualization, manuscript writing; Ozharovskaia T.A., Popova O. – propagation, extraction and purification of the virus; Nikitenko N.A., Krasnoslobodtsev K.G. – analysis of a database of samples, adenovirus testing; Burtseva E.I. – database curation, consulting on epidemiology issues; Zubkova O.V. – propagation, extraction and purification of the virus, writing and editing of the manuscript; Voronina O.L. – methodology and design of the genomic study, bioinformatics analysis, writing and editing of the manuscript; Gintsburg A.L – general project management, editing of the manuscript.

Received 14 April 2025 Accepted 12 June 2025 Published online 15 September 2025