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Abstract

Introduction. The World Health Organization considers the values of antibody titers in the hemagglutination
inhibition assay as one of the most important criteria for assessing successful vaccination. Mathematical modeling
of cross-immunity allows for identification on a real-time basis of new antigenic variants, which is of paramount
importance for human health.

Materials and methods. This study uses statistical methods and machine learning techniques from simple to
complex: logistic regression model, random forest method, and gradient boosting. The calculations used the
AAindex matrices in parallel to the Hamming distance. The calculations were carried out with different types
and values of antigenic escape thresholds, on four data sets. The results were compared using common binary
classification metrics.

Results. Significant differentiation is shown depending on the data sets used. The best results were demonstrated
by all three models for the forecast autumn season of 2022, which were preliminary trained on the February season
of the same year (Auroc 0.934; 0.958; 0.956, respectively). The lowest results were obtained for the entire forecast
year 2023, they were set up on data from two seasons of 2022 (Aucroc 0.614; 0.658; 0.775). The dependence of
the results on the types of thresholds used and their values turned out to be insignificant. The additional use of
AAindex matrices did not significantly improve the results of the models without introducing significant deterioration.
Conclusion. More complex models show better results. When developing cross-immunity models, testing on a
variety of data sets is important to make strong claims about their prognostic robustness.
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Pestome

BeepeHue. BcemupHas opraHusaums 30paBOOXpaHeHUs B Ka4eCTBE OHOIMO U3 BaXHEWLLNX KPUTEPUEB OLEHKU
yCneLHo NpoBOAMMON BaKUMHALMKM U CNOCOBHOCTY NpeoTBpaLLaTh 3aboneBaHne y HaceneHns paccmaTpuBaeT
3Ha4YeHWs1 TUTPOB aHTUTEN B peakuuyM TOPMOXEHWUS remarrnioTuHaumm. MatemaTtnyeckoe ModenuposaHue nepe-
KPECTHOro MMMYHWUTETa MO3BOMSET ONEepPaTUBHO BbISIBMSATL HOBbIE aHTUTEHHble BapuaHTbl, YTO UMEET nepBocTe-
NeHHoe 3HadyeHwe ANs aNMAEeMMONIorM4ecKkoro Haa3opa 1 30oPOBbS YenoBeka.

MaTepuanb! 1 MeToabl. B HacToswel paboTte NpUMEHEHbI CTaTUCTUYECKUE METOAbI U TEXHWUKN MALUMHHOMO 06-
Yy4YeHUs1 OT MPOCTOrO K CIIOXKHOMY — PErPeCCUOHHAs NormcTnyeckas Mogenb, METOA CrlyHalHoro feca v rpaguneHT-
HbI BycTUHT. B pacyeTtax, napannensHo AuCTaHuMmn XeMMuHra, Takke ncnonbsosany matpuusl AAindex. Beiumc-
NeHna NPoBOAMMU C pasHbIMK TUMaMM 1 BENMYMHAMM NOPOroB aHTUMEHHOMO YCKOMb3aHWs, Ha YeTbipex Habopax
AaHHbIX (BpEMEHHEIX nepuogax). Pesynsrartbl cpaBHMBaNM nNo NpuUHATLIM METpUKam BruHapHOM knaccudukaumm.
PesynbTathl. [okasaHa cylwecTtBeHHasa anddpepeHumaumsa B 3aBUCMMOCTU OT NPUMEHSeMbIX HabopoB AaHHbIX.
Jlydwe pesyneraTbl NPOAEMOHCTPUPOBANU BCe TPU MOAENW Ha MPOrHO3HbIN OCeHHMN ce3oH 2022 r., npeasa-
putenbHo obyyeHHble Ha cheBpanbckoM ce3oHe atoro xe roga (AUROC 0,934; 0,958; 0,956 cooTBETCTBEHHO).
HaunmeHblune pesynsTaThbl 661y Nony4eHbl Ha BeCb NPOrHO3HbIN 2023 1., HACTPOEHHbIE Ha AaHHBIX ABYyX CE30HOB
2022 r. (AUCROC 0,614; 0,658; 0,775 cooTBeTCTBEHHO). [1pn 3TOM 3aBMCMMOCTb pe3ynbTaToB OT NPUMEHAEMbIX
TWUMOB MOPOrOB U UX BENMUYMH OKalanacb HesHauuTenbHon. [JononHutensHoe npumeHeHne matpuy AAindex He
YAyYLWWIO CYLWECTBEHHO pe3ynbTaTbl MoAenem, HO B TO e BPEMSI HE BHECIIO 3HAYMMbIX YXyALIEHWUN.
3akntoyeHue. bonee cnoxHble MOAENM NOKa3bIBAKOT NyyllniA pesynerart. [pu pa3paboTke mogenen nepekpect-
HOro MMMYyHWTETa, ANS y6eanTenbHoro yTeepxaeHns o6 ux NporHOCTUYECKOW YCTONYMBOCTM BaXKHO NMPOBOAUTL
TECTMPOBaHNE Ha pa3HbiXx Habopax AaHHbIX.

KnroueBble cnoBa: supyc epurna A; nodmun H3N2; mumpsl aHmumen e PTIA; nepekpecmHbil uMmMyHUmem;
aHmMue2eHHoe paccmosiHue; aHmu2eHHbIl calim; ducmaHyusi XemmuHaa; 6asbl AAindex; no-
aucmuyeckas peepeccusi; Memood crlyyaliHo20 sieca; epadueHmHbIl 6ycmuHe, 3nudemuoro-
a2udeckasi Moderib, UMMYHHbIU naHOwaghm; 8akUUHHbIU wmamm; Memoodbl MalWUHHO20 06-
y4yeHus

Onsa umtupoBaHua: AcatpsiH M.H., Wmeip WN.C., Tumocpees B.U., Wepbunnn [O.H., AracapsH B.I., Tumodee-
Ba T.A., Epwos WN.®., l'epacumyk 3.P., Hosgpayesa A.B., CemeHeHko T.A., JloryHos . FO., TuHuGypr A.J1. Pas-
paboTka, n3yyeHume u cpaBHEHUE Mopenein NepekpecTHoOro UMMyHUTETa K BUpYCy rpunna ¢ npuMEHeHnem cra-
TUCTUYECKMX METOAOB M MaLUMHHOMO obyyeHns. Bornpocsi supyconoauu. 2024; 69(4): 349-362. DOI: https://doi.
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Introduction

It is well known that the influenza A virus, belonging
to the Orthomyxoviridae family [1], has high mutational
variability; therefore, circulating strains (populations)
include mutant variants that avoid the protective effect of
antibodies developed both as a result of the disease and
vaccination. Mutant forms of the virus that carry certain
substitutions and lead to conformational changes in the
surface protein can cause difficulties in the interaction
of antigenic sites with neutralizing antibodies, which
is important when selecting and evaluating strains for
creating vaccines.

The World Health Organization (WHO) considers the
values of antibody titers in the hemagglutination inhibition
assay (HIA) as one of the most important criteria for
assessing successful vaccination and the ability to prevent
disease in the population'. At the same time, laboratory
experimental studies are quite time-consuming and labor-
intensive. Mathematical modeling of cross-immunity
allows for identification on a real-time basis of new
antigenic variants, which is of paramount importance for
epidemiological surveillance and human health [2, 3].

A promising direction is modelling the spread of the
influenza virus over long time intervals, taking into ac-
count seasonality and mutation factors, to recommend
a vaccine strain for the upcoming season. In 2020, the
team of the National Research Center for Epidemiology
and Microbiology named after N.F. Gamaleya developed
and successfully registered the Influenza IDE software
(a multi-strain epidemic model (MEM)) with a cross-im-
munity model and a constantly updated database Influ-
enza DB of various types and subtypes of the virus [4].
The MEM uses a population (agent) model to simulate the
spread of the influenza virus among the population, as well
as nested models (cross-immunity and immune response)
to form an immune landscape (is the quantitative distribu-
tion of antigenic variants (with antibodies produced against
them) among the population at a given point in time in ac-
cordance with the individual disease histories of agents
(individuals)), that directly affects the speed and extent of
spread of individual influenza virus strains among the pop-
ulation and recommend the most effective vaccine strain.
The software is designed to be able to integrate multiple
models of cross-immunity [5]. As part of research on mod-
ifying the software, the team of authors is developing mod-
els of cross-immunity, using the example of the influenza A
(H3N2) virus, incorporating mathematical methods.

The purpose of the study is to develop, study, and
compare cross-immunity models using statistical methods
and machine learning.

Materials and methods

Data description

To develop models and calculations, the Influenza DB
data set was used with information from:
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— Published WHO seasonal data on the results of serum
testing in the HIA (the entire data set from 20142023
of both reference and test strains of influenza A (H3N2)
virus);

— From the GISAID (Global Initiative on Sharing All
Influenza Data) platform (sequences + supporting infor-
mation).

After cleaning and harmonizing the data from GISAID,
followed by alignment to the reference sequence and
combining into antigenic sites, according to the proposed
proprietary template, a Hamming distance matrix was
formed for each of the 6 antigenic sites (with assignment
of a unique identifier to each sequence).

In previous calculations [5], by tuning and forecast based
on later data, we showed that the accuracy of the results is
significantly influenced by the volume and quality of the
HIA studies performed. To develop models of cross-immu-
nity, the subset with the largest number (36,509) of Cell-
Cell observations (with passage history in cell culture) was
selected. Taking into account the fundamental increase
in observations in 2022 and 2023, we decided to choose
the said seasons as forecast periods. While the intervals
from 20142021, as well as 2022 and 2023, respectively,
were taken as retrospective tuned periods (Table 1).

In previous calculations, integer numeric values were
used as Hamming distance values according to the number
of amino acid substitutions (for example, 0, 1, 2, 3 ... 8).
For a more sensitive assay, assessment of the contribution
of each amino acid and comparison, we used the AAin-
dex matrices in this study. This is a database of numerical
indicators reflecting various physical-chemical and bio-
chemical properties of amino acids and amino acid pairs.
Thus, in parallel, replacing the value of the Hamming
distance with the inherent numerical value of a specific
physical-chemical characteristic.

The AAindex database consists of three sections and
is released every year. The matrices are presented as
flat files: AAindex1 for amino acid indices, AAindex2
for amino acid substitution matrices, and AAindex3 for
amino acid contact potentials. Currently, researchers
continue to collect and complete the database, following
the expansion of the collection? [6].

Determination of antigenic distance
and selection of thresholds

The common «gold standard» for assessing the
presence and determining the concentration of virus-
neutralizing antibodies in studied serum specimens is
the hemagglutination inhibition assay (HIA). Essentially,
the HIA assesses the level of cross-immunity against the
influenza virus [7-9].

A significant number of studies on the investigation
of antigenic differences between strains (antigenic
distance) use both the titer values themselves and various
expressions from the HIA titers or logarithms from these
expressions: Rij = cij / cii [10]; log2(Rij), as a measure

'WHO. World Health Organization. Available at: https://www.who.
int/initiatives/global-influenza-surveillance-and-response-system
(accessed June 24, 2024).

DBGET/LinkDB in GenomeNet
bin/www_bfind?aaindex;
aaindex/).

(http://www.genome.jp/dbget-
ftp://ftp.genome.jp/pub/ db/community/
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Table 1. Data characteristics
Tadauuna 1. XapakrepucTHka JaHHBIX

Model training / O0yueHue Moenu

Model testing / TectupoBanue Moaenu

period number of strain pairs titer period number of strain pairs titer

HEepHOA YHUCIIO Map ITaMMOB THTP HEepHOA YHCIIO Map ITaMMOB THTP
2014-2021 10 272 160 [40; 320] 2022 8183 80 [40; 320]
2022 8183 80 [40; 320] 2023 6143 160 [80; 320]
2023 2518 80 [40; 320] 2023 3689 160 [80; 320]
(feb.) / (dpes.) (sep.) / (cen.)
2022 1994 160 [40; 320] 2022 6675 80 [40; 320]
(feb.) / (dpes.) (sep.) / (cen.)

of cross-immunity during infection and/or to study the
effectiveness of vaccines [11-13]. In the meantime,
certain values of these titers and expressions may indicate
the presence or absence of protection against infection
with a specific strain of influenza virus. And, in this
case, the transition value is called the antigenic escape
threshold. For the current study, we determined the
values of the probabilistic thresholds of antigenic escape,
expressed in titers, referring to scientific literature data,
as1:40and 1:80.[14, 15].

In addition, it is well known that the results are
significantly influenced by the individual characteristics
of laboratory animals. To reduce the influence of these
factors, it is not the titer value itself that is taken as the
threshold for antigenic escape, but the ratio of the titer
in the reaction under consideration, normalized to its
maximum dilution for a given serum. In this study, we
decided to carry out calculations for the entire array of
test strains and take the ratio of the maximum titer value
in the experiment to the titer value of the test strain as the
thresholds for antigenic escape (ref max/titer) greater
than 4; and greater than or equal to 4 [12, 13, 16-19].

Thus, for furthercalculations,antigenicescapethresholds
were used, expressed in titers (dilutions 1:40; 1:80) and
normalized (ref max/titer > 4; ref max/titer > 4).

Cross-immunity models

For the chosen purpose and to solve binary classifica-
tion problems (in our case, antigenic escape), statistical
methods and machine learning techniques were consid-
ered: from simple to complex, such as the logistic regres-
sion model, the random forest method and the gradient
boosting.

Logistic regression is a type of statistical modelling
that allows one or more independent variables (predic-
tors) to be quantitatively associated with a binary attri-
bute by determining the odds ratio of possible outcomes
[20].

Random forest method is a machine learning algo-
rithm that uses an ensemble of decision trees. Decision
trees are a nonparametric algorithm used to solve clas-
sification and regression problems. The algorithm works
based on the principle of a tree structure, where each in-
ternal node represents a test for the value of some attri-
bute, each branch is the result of this test, and each leaf
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node is a class mark or numeric value. The random trees
method assigns the object to the class that was selected by
the majority of decision trees included in the ensemble’.

Gradient boosting is a machine learning technique
that is used for classification and regression problems.
The main idea of gradient boosting is to construct an en-
semble of weak models, usually decision trees, in such a
way that each subsequent model corrects the errors of the
previous models [21]. As part of this study, the CatBoost
library was used to implement gradient boosting* .

Python programming language libraries were used for
data preprocessing, descriptive statistics, learning and
quality assessment of the models:

— pandasql 0.7.3 — data preprocessing;

— pandas 2.0.3 — descriptive statistics, presentation of
results;

— sklearn 1.2.2 — logistic regression, random forest
method, model quality assessment

—matplotlib 3.7.1 — plots.

The analysis of the stability of the predictive ability of
cross-immunity models was carried out on retrospective
data with the largest number of observations with
subsequent forecast. As a measure of the adequacy (quality
and accuracy of forecast) of models and comparison of
various algorithms, quality metrics adopted in machine
learning tasks were used (indicators that depend on the
classification results and do not depend on the internal
state of the model):

— Accuracy is the percentage of reproducibility of
correct model results;

— Sensitivity (completeness) or True Positive
Rate (TPR) is defined as the number of true positive
classifications relative to the total number of positive
observations;

— Specificity is the proportion of True Negatives Rate
(TNR)defined asthenumberoftruenegative classifications
in the total number of negative classifications;

— MCC (Matthews Correlation Coefficient) is a
balanced measure of performance that can be used even
if a class includes many more samples than another one.
Value range from —1 to +1;

SIBM. Available at: https://www.ibm.com/topics/random-forest
4Catboost. Available at: https://catboost.ai/en/docs/ (accessed
June 24, 2024).
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— F1 (F-score) is a balanced metric that combines
information about accuracy (precision) and sensitivity
(completeness) using their harmonic mean value.
Maximization of F1 is achieved when completeness and
accuracy are simultaneously equal to 1°°,

The ROC analysis was also used as the most
comprehensive indicator of model adequacy. The ROC
curve shows the dependence of the number of correctly
classified positive examples on the number of incorrectly
classified negative examples. A quantitative interpretation
of the ROC analysis is provided by the AUC indicator
(Area Under Curve, area under the ROC curve). The
higher the AUROC score, the better the classifier. The
following gradation is normally used: Excellent (0.9-1.0);
Very good (0.8-0.9); Good (0.7-0.8); Average (0.6-0.7);
Unsatisfactory (0.5-0.6)"8,

The studies were carried out according to the design
presented in Figure 1.

Results

In our study, the binary classification implemented
by various methods (logistic regression model,
random forest and gradient boosting) is used to predict
the probability of occurrence of a certain outcome
(protected or not) based on titer values in dilutions
(I : 40; 1 : 80) or normalized ones (ref max/titer
> 4; ref max/titer > 4).

Thresholds expressed in titers (dilutions 1 : 40 and 1 : 80)

As the threshold value of cross-immunity between two
arbitrary strains in our calculations, we decided to take
the value of the HIA titer in dilutions of both 40 and 80.

The distribution of the positive attribute (antigenic es-
cape) forthe 1:40and 1 : 80 thresholds in both all tuned and
forecastperiodsranged from 30 to 40% and from 47 to 53%,
respectively. The exception was year 2023, where the
ranking of the same attribute varied from 37 to 44% for
the 1 : 80 threshold, and from 15 to 26% for the 1 : 40 thre-
shold. Detailed information for all thresholds and periods
is presented in the Appendix.

For each time period, all three models were tuned and
tested according to the study design. The calculation
results for all three models in titers (1 : 40) are presented
in Table 2 and in Plots (Fig. 2—-5). The adequacy of each
model for the selected forecast periods was assessed
using common indicators.

*Top 10 Machine Learning Evaluation Metrics for Classification —
Implemented In R. 2022. Available at: https://www.appsilon.com/
post/machine-learning-evaluation-metrics-classification  (accessed
June 24, 2024).

°F1 Score in Machine Learning: Intro & Calculation. 2022. Available at:
https://www.v7labs.com/blog/f1-score-guide (accessed June 24, 2024).
Loginom.  Quality = metrics  of  binary classification
models; 2023. Available at: https://loginom.ru/blog/classification-
quality (in Russian).

$Microsoft Learn. Evaluation of the results of experiments with
automated machine learning; 2023. Available at: https:/learn.
microsoft.com/ru-ru/azure/machine-learning/how-to-understand-
automated-ml?view=azureml-api-2 (in Russian).
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As can be seen from the results, more complex models
show better results in almost all indicators. The results
for the forecast period of 2023, with a pre-set period
for 2022, stand out from this series with a slight difference.
Regarding the comparison of individual indicators across
all three models, attention should be paid to the (values
of) specificity and sensitivity. Both metrics are balanced
for all forecast and tuned periods. The exception is the
forecast period of year 2023, tuned on year 2022, which
exhibits high values for sensitivity and low values for
specificity.

Figures 2-5 show the results of the ROC analysis
of all three models. According to the adopted metric
of classifier quality, the good performance under the
ROC curve is illustrated by all three models for the
forecast year 2023 with preliminary learning on data
for year 2022. Very good results were obtained for
the tuned period from 2014 to 2021 with a forecast
for 2022. The forecasted September 2023 season, which
was pre-tuned for the February period of the same
year, showed similar results. The results of all three
models for the forecast autumn season of year 2022 are
quite stable. Models trained on the February season
of year 2022 demonstrated excellent AUROC values.
These results coincide with our own indicators based on
multiple linear regression [5].

We also decided to test the quality of our models for a
cross-immunity titer threshold value equal to 80. Detailed
calculations (tables, ROC curves) are presented in the
Appendix.

When comparing the results obtained using different
threshold escape values, attention is drawn to the fact that,
regardless of the threshold value, the same trends remain
for all tuned periods: the best results were obtained in
the forecast for 2022 and slightly moderate ones in the
forecast for 2023.

Thresholds expressed by the ratios ref max/titer > 4
and ref max/titer > 4)

As has been noted more than once by researchers,
despite all efforts to standardize the HIA [22], the initially
high error of the HIA technique (17%) [23] remains a
factor that significantly influences the results. In addition,
the final result is significantly influenced by the individual
characteristics of laboratory animals. To reduce the
influence of these factors, we used the normalized ratio
ref max/titre > 4 and > 4 as the threshold for antigenic
escape in our calculations.

There is a fairly even distribution of the positive
attribute (antigenic escape) for the normalized threshold
ref max/titre > 4 in both all tuned and forecast periods
from 44 to 54%. For the normalized threshold ref max/
titre > 4, the ranking of the same attribute changes
from 21 to 28%. Detailed information is provided in the
Appendix.

As can be seen from Table 3, the trends continue with
the results of calculations using the threshold equal to 40.
As in the previous case, the results for the forecast period
of year 2023, with a pre-set period of year 2022, differ
from the general trend.
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Fig. 1. Study flowchart.

1.1. Selection of source data; 1.2. Selecting the threshold for antigen release; 1.3. Dividing the data into a training and a forecast periods; 2. Model development;
3. Adequacy assessment and comparative analysis. Explanations in the text.

Puc. 1. Biok-cxema uccieqoBaHus.

1.1. BbIOOp MCXOMHBIX AaHHBIX; 1.2. BEIOOp mopora aHTUreHHOTO ycKoib3aHus; 1.3. Pa3nenenue nanHbIX Ha 00y4arommuii nmepuos u nporuo3usiid; 2. [loctpoeHue
Mmozeneit; 3. OueHka aieKBaTHOCTH U CpaBHUTENbHbIN aHanu3. [ToscHeHus B TekcTe.

Fig. 2. 2014-2021 => 2022 (1 : 40).

Here and in Fig. 3-5: the logistic regression model is shown in blue; random
forest — in yellow; gradient boosting — in green, for one type of threshold
expressed in titers (dilution 1 : 40). The sensitivity is plotted on the Y-axis, and
the 1 minus specificity represent on the X-axis. Explanations are given in the text.

Puc. 2. 20142021 => 2022 (1 : 40).

3neck M Ha puc. 3—5: MOJIENb JOTUCTUUECKOW PErpeccuu BbIIENICHa CUHUM
L[BETOM; CJIy4aifHOTO Jieca — KEITHIM IIBETOM; IPAJHEHTHOTO OyCTHHIra — 3¢-
JICHBIM [BETOM, JIJISl OJJHOTO THIIA TI0POra, BRIPAXKEHHOTO B TUTpax (pa3Besie-
uue 1 : 40). Ilo ocu ¥V omnoxxeHa TyBCTBHTENBHOCTS (Sensitivity), a o ocu
X otnoxkeHa: / munyc cnienuduunocts (specificity). [loscHenust B Tekcre.

Figures 6-9 present the results of the ROC analysis of
all three models for the normalized threshold (> 4).

Atall forecast periods, the values of the areas under the
ROC curves are above 0.8, as in the case of calculations
for thresholds expressed in titers (1 : 40 and 1 : 80),
with the exception of the plots in Figure 9, where the
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Fig. 3. 2022 (feb.) => 2022 (sep.) (1 : 40).
Puc. 3. 2022 (¢peB.) => 2022 (cen.) (1 : 40).

AUROC value is above 0.7 for random forest and
gradient boosting models.

The main reason for the lower AUROC score is the
low sensitivity of the models. It should be noted that, in
contrast to the threshold type (1 : 40 and 1 : 80) for the
period tuned on the data of year 2022 and the forecast for
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Table 2. Threshold titer (1 : 40)
Tadaumna 2. [Topor B tutpax (1 : 40)

OPUTUHAJbHbBIE NCCNEAOBAHUA

Parameter . o

Tapamerp Accuracy Sensitivity Specificity MCC F1 AUROC
2014-2021 => 2022
Logistic regression 0.764 0.704 0.858 0.548 0.785 0.859
Jlor. perpeccust
Random forest 0.803 0.727 0.924 0.635 0.819 0.886
CryqaiiHblii tec
Gradient boosting 0.814 0.750 0.913 0.647 0.831 0.899
I'papueHTHBII OycTHHT
2022 (des. / feb.) => 2022 (sep. / cen.)
Logistic regression 0.861 0.804 0.949 0.735 0.875 0.934
Jlor. perpeccust
Random forest 0.886 0.931 0.815 0.759 0.909 0.958
CiyuaiiHblif iec
Gradient boosting 0.880 0.944 0.781 0.747 0.906 0.956
I'papueHTHBIN OyCTHHT
2023 (feb. / dpes.) => 2023 (sep. / ceH. )
Logistic regression 0.637 0.607 0.806 0.297 0.739 0.760
Jlor. perpeccust
Random forest 0.734 0.719 0.815 0.399 0.821 0.854
CuyyaiiHblit 1ec
Gradient boosting 0.869 0.953 0.402 0.420 0.925 0.851
I'papgueHTHBIN OyCTHHT
2022 =>2023
Logistic regression 0.837 0.970 0.304 0.393 0.905 0.775
Jlor. perpeccust
Random forest 0.838 0.968 0.316 0.398 0.905 0.658
CuyyaitHblit 1ec
Gradient boosting 0.837 0.968 0.311 0.395 0.905 0.614

I'pagueHTHBIN OyCTHHT

Fig. 4. 2023 (feb.) => 2023 (sep.) (1 : 40).
Puc. 4. 2023 (pes.) => 2023 (cen.) (1 : 40).

year 2023, logistic regression shows a lower result than in
the case of more complex models

The results for the normalized threshold greater than
and equal to 4 are generally similar for all periods,
but, as expected, have higher sensitivity and weaker
specificity. The difference is especially noticeable in the

Fig. 5.2022 => 2023 (1 : 40).
Puc. 5.2022 => 2023 (1 : 40).

forecast for year 2023 tuned on data of year 2022. Full
calculations are presented in the Appendix.

Application of AAindex matrices

At the next stage of research, we applied the AAindex
matrices, thereby replacing the value of the Hamming
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Table 3. Threshold normalized more than 4
Tadauua 3. HopmupoBanHslii mopor Gosnbiie 4

ﬁz;f;ztf; Accuracy Sensitivity Specificity MCC F1 AUROC
2014-2021 => 2022
Logistic regression 0.817 0.915 0.714 0.644 0.836 0.840
Jlor. perpeccus
Random forest 0.816 0.893 0.736 0.638 0.832 0.861
Ciy4aiiHblii ec
Gradient boosting 0.821 0.900 0.738 0.648 0.837 0.899
I'pagueHTHbII OycTHHT
2022 (feb. / des.) => 2022 (sep. / ceH.)
Logistic regression 0.883 0.929 0.837 0.769 0.888 0.942
Jlor. perpeccust
Random forest 0.890 0.897 0.883 0.780 0.891 0.951
CrryuaiiHblil nec
Gradient boosting 0.890 0.904 0.876 0.781 0.892 0.951
I'paguenTtHslif OycTHHT
2023 (feb. / dpes.) => 2023 (sep. / ceH.)
Logistic regression 0.750 0.791 0.715 0.505 0.745 0.821
Jlor. perpeccus
Random forest 0.770 0.840 0.710 0.550 0.771 0.849
Cry4aitHblii Jiec
Gradient boosting 0.762 0.804 0.726 0.528 0.757 0.848
I'panuenTHsblii OycTHHT
2022 =>2023
Logistic regression 0.624 0.249 0.965 0.310 0.386 0.664
Jlor. perpeccust
Random forest 0.613 0.257 0.938 0.268 0.388 0.748
CyuaiiHblii ec
Gradient boosting 0.614 0.259 0.937 0.268 0.389 0.725

I'pagueHTHbINH OycTHHT

Fig. 6. 2014-2021 => 2022 (> 4).

Here and in Fig. 7-9: logistic regression models are shown in blue; random

forest models are shown in yellow; gradient boosting models are shown in

green. Sensitivity is plotted on the Y-axis, and 1 minus specificity represents
on the X-axis. Explanations are given in the text.

Puc. 6.2014-2021 => 2022 (> 4).
31ech M Ha puC. 7-9: MOZENM JIOTUCTUYECKOW PErpeccuy BbIAENEHbI CHHUM

L[BETOM; CIIy4aifHOTO JIeCa — JKEJITHIM [[BETOM; IPa/IACHTHOTO OYCTHHTa — 3eJIe-
HbIM 1BeToM. [1o ocu ¥ oTioxkeHa 4yBCTBUTENBHOCTD (sensitivity), a mo ocu X

oTnoxeHa: 1 Munyc crienumaHOCTS (specificity). [losicHeHus B TekcTe.
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Fig. 7. 2022 (feb.) => 2022 (sep.) (> 4).
Puc. 7. 2022 (¢pes.) => 2022 (cen.) (> 4).



BOMPOCHI BUPYCOJIOTUW. 2024; 69(4)
https://doi.org/10.36233/0507-4088-250

Fig. 8. 2023 (feb) => 2023 (sep.) (> 4).
Puc. 8. 2023 (dpe) => 2023 (cen.) (> 4).

Table 4. Threshold titer (1 : 40). Comparison of results
Tab6aunua 4. ITopor B Tutpax (1 : 40). CpaBHEHHE Pe3yIbTATOB

OPUTUHAJbHbBIE NCCNEAOBAHUA

Fig. 9. 2022 => 2023 (> 4).
Puc. 9. 2022 => 2023 (> 4).

Hamming distance . . .
Parameter Tucranms XemvuHra AAindex-AZAE 40 AAindex-BENS_40 AAindex-MUET_40
ITapamer
P P AUROC AUROC AUROC AUROC

2014-2021 => 2022
Logistic regression 0.850 0.856 0.857 0.874
Jlor. perpeccust
Random forest 0.879 0.876 0.878 0.878
Cry4aiiHblii Jiec
Gradient boosting 0.893 0.894 0.908 0.898
I'papuenTtHbIi OycTHHT
2022 (feb. / des.) => 2022 (sep. / ceH.)
Logistic regression 0.912 0.887 0.937 0.932
Jlor. perpeccus
Random forest 0.958 0.956 0.958 0.957
CryJaiiHblii tec
Gradient boosting 0.956 0.957 0.959 0.957
I'papueHTHBII OycTHHT
2023 (feb. / dpes.) => 2023 (sep. / ceH.)
Logistic regression 0.772 0.796 0.758 0.790
Jlor. perpeccus
Random forest 0.854 0.882 0.886 0.884
CrnyvaifHblii 1ec
Gradient boosting 0.851 0.883 0.878 0.875
I'panuenTtHslii OycTHHT
2022 =>2023
Logistic regression 0.790 0.685 0.749 0.737
Jlor. perpeccust
Random forest 0.659 0.654 0.659 0.649
Ciay4aitHblii iec
Gradient boosting 0.624 0.629 0.581 0.590

I'panueHTHbIH OycTHHT

distance with the inherent numerical value of a specific
physical-chemical and biochemical characteristic.
Foreign colleagues used AAindex matrices in various
combinations in their studies. They are presented in quite
a significant number. And we considered it useless to

apply all the matrices without a validated theory or logic.
Therefore, as a starting point, it was decided to use the
most frequently intersecting matrices that showed the
best results with the colleagues [24—27] and then compare
the results obtained:
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Table 5. Threshold normalized more than 4. Comparison of results

Tadauua 5. HopmuposauHslii mopor 6osnbiue 4. CpaBHEHHE pe3ybTaToB

Hamming distance AAindex-AZAE AAindex-BENS AAindex-MUET
Parameter Jucrannusa XeMMuHra ref max/titre >4 ref_max/titre >4 ref max/titre >4
ITapamerp
AUROC AUROC AUROC AUROC
2014-2021 => 2022
Logistic regression 0.821 0.833 0.762 0.821
Jlor. perpeccust
Random forest 0.876 0.881 0.880 0.884
CiyuaiiHblii ec
Gradient boosting 0.899 0.884 0.904 0.908
I'paguentHblit OycTHHT
2022 (feb. / ¢es.) => 2022 (sep. / cen.)
Logistic regression 0.936 0.902 0.944 0.943
Jlor. perpeccust
Random forest 0.950 0.941 0.948 0.947
CiyuaiiHblii ec
Gradient boosting 0.951 0.946 0.950 0.943
I'paguentHbIit OycTHHT
2023 (feb. / deB.) => 2023 (sep. / cen.)
Logistic regression 0.819 0.821 0.820 0.823
Jlor. perpeccus
Random forest 0.848 0.842 0.846 0.841
CiyuaiiHblii ec
Gradient boosting 0.848 0.844 0.849 0.848
I'pagueHTHbIi OyCTHHT
2022 =>2023
Logistic regression 0.740 0.575 0.644 0.709
Jlor. perpeccust
Random forest 0.734 0.732 0.739 0.747
CiyyaiiHbli ec
Gradient boosting 0.714 0.714 0.676 0.736

I'pagueHTHBIN OyCTHHT

— AZAE970101 The single residue substitution matrix
from interchanges of spatially neighbouring residues
(Azarya-Sprinzak et al., 1997).

— BENS940104 Genetic code matrix (Benner et
al., 1994).

— MUETO010101 Non-symmetric substitution matrix
(SLIM) for detection of homologous transmembrane
proteins (Mueller et al., 2001).

The calculation results for all three models, for the
threshold in titers (1 : 40) and normalized greater
than 4, are presented in Tables 4 and 5. All the other
calculations are presented in the Appendix.

Based onthe comparative results presented in Tables 4, 5,
it can be stated that the AUROC scores calculated both
using the Hamming distance and the selected AAindex
matrices do not differ significantly. Noteworthy is the fact
that the generally followed rule is: more complex models
demonstrate better results, including the forecast for the
period of year 2023, tuned on data from year 2022, with
the normalized threshold greater than > 4. This rule
works better for calculations with the AAindex matrices,
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with only a few exceptions. Results of the full study are
presented in the Appendix.

Discussion

The main purpose of this study was to investigate the
influence on the study results of different types of cross-
immunity models used. For a more objective and stable
assessment, we trained and tested the models that we had
developed over various time periods. In this case, both
the type of antigenic escape threshold and its value were
varied.

Generally, as expected, more complex models showed
better results. The only time period using the threshold
type expressed in titers (1 : 40; 1 : 80), which stands out
from this pattern, is the results for the forecast period of
year 2023 with a pre-tuned period of year 2022, where the
best result was shown by the simplest logistic regression
model. At the same time, it is important to note that our
calculations clearly demonstrated the significant influence
of the time periods under consideration, i.e. data arrays,
on forecast results.
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The best forecast results, using all types of models and
different types of antigenic escape threshold values, were
obtained for the September season of year 2022, pre-tuned
on the February season. Good forecast results for the full
year 2022 were demonstrated by the models trained on
data from 2014 to 2021. Next, in descending gradation,
the results of the forecast for the February period of
year 2023 are presented, with the tuned September season
of the same year. And the lowest values were shown by
calculations for the full year 2023, with training on data
from two seasons of 2022.

Comparing results using different types of antigenic
escape thresholds does not reveal significant differences.
At the same time, in should be noted that for the
threshold values, in titers (1 : 80) and normalized > 4, the
distribution of the studied attribute of antigenic escape
(positive outcome) is more uniform, from 37 to 54%,
respectively. A slightly different, sharper distribution of
the positive outcome (from 15 to 40%) is demonstrated
by the results obtained for threshold values in titers
(1 : 40) and normalized > 4.

Also attracting attention is the fact that when replacing
the threshold wvalue, expressed both in titers and
normalized, from a smaller value to a larger one, two
specific parameters for assessing models — sensitivity and
specificity — are somewhat interrelated. In calculations,
the sensitivity increases and the specificity decreases.

For the first time, very high forecast results for the
September season of year 2022, with a pre-tuned model
on February data of the same year, were obtained in
our study [5], using an unprecedented amount of data
for year 2022. In the present study, we repeated the
calculations in a similar way, but using the developed new
models. Additionally, similar calculations were carried
out with data for year 2023. In both cases, good results
were obtained. The robustness of the proposed approach
needs to be tested using data from subsequent seasons.

The active use of the AAindex databases in the
development of cross-immunity models has been noted
in a number of scientific papers in recent years [24-27].
Since the AAindex matrices include numerical indicators
reflecting various physical-chemical properties of amino
acids and amino acid pairs, we can presume that their use
in calculations should lead to improved model accuracy.

Our calculations using three AAindex matrices selected
on the basis of the most frequently intersecting matrices
in several foreign scientific papers, did not show a
significant improvement in the results. It should be noted
that using them did not worsen the results.

The above may indicate that the objective assessment
of the results in case of using specific AAindex matrices
requires a biological justification of the rationale for
applicability of them in a particular case.

In the studies on cross-immunity model development
published to date, researchers typically use one set of data
to train the model on and test it on another set of data. In
some cases, the entire sample (set of data) is randomly
divided into two parts, with a larger volume intended for
tuning the model and a smaller quantity for validation
[13, 16, 24, 27-31]. The results of the current study

OPUTUHAJbHbBIE NCCNEAOBAHUA

show that such an algorithm is not sufficient to justify the
predictive ability of the model. Our calculations suggest
that the results differ quite significantly depending on the
data sets used. In our opinion, to overcome this limitation
and make a convincing statement about the prognostic
robustness of the model, it is necessary to carry out both
tuning and testing on several different sets.

Conclusion

In current research, more complex models developed
by statistical methods and machine learning have
demonstrated better results. At the same time, sclective
application of types of antigenic escape thresholds and
replacement of their numerical values do not make a
significant contribution. They should be selected based
on factors independent of the model itself.

It is important and necessary to train and test cross-
immunity models based on searching for the dependence
of HIA titers on changes in amino acid positions of
influenza virus sequences on various data sets.

The existing knowledge base and skills of researchers
in both technical and biological areas allow for further
development of models of cross-immunity, using more
complex deep learning techniques.
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