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Introduction. The WHO regularly updates influenza vaccine recommendations to maximize their match with 
circulating strains. Nevertheless, the effectiveness of the influenza A vaccine, specifically its H3N2 component, has 
been low for several seasons.
The aim of the study is to develop a mathematical model of cross-immunity based on the array of published WHO 
hemagglutination inhibition assay (HAI) data.
Materials and methods. In this study, a mathematical model was proposed, based on finding, using regression 
analysis, the dependence of HAI titers on substitutions in antigenic sites of sequences. The computer program 
we developed can process data (GISAID, NCBI, etc.) and create “real-time” databases according to the set tasks.
Results. Based on our research, an additional antigenic site F was identified. The difference in 1.6 times the 
adjusted R2, on subsets of viruses grown in cell culture and grown in chicken embryos, demonstrates the validity of 
our decision to divide the original data array by passage histories. We have introduced the concept of a degree of 
homology between two arbitrary strains, which takes the value of a function depending on the Hamming distance, 
and it has been shown that the regression results significantly depend on the choice of function. The provided 
analysis showed that the most significant antigenic sites are A, B, and E. The obtained results on predicted HAI 
titers showed a good enough result, comparable to similar work by our colleagues. 
Conclusion. The proposed method could serve as a useful tool for future forecasts, with further study to confirm 
its sustainability.

Keywords: influenza virus; subtype H3N2; HAI titers; cross-immunity; antigenic distance; antigenic site; Hamming 
distance; regression analysis; epidemiological model; immune landscape; vaccine strain 

For citation: Asatryan M.N., Timofeev B.I., Shmyr I.S., Khachatryan K.R., Shcherbinin D.N., Timofeeva T.A., 
Gerasimuk E.R., Agasaryan V.G., Ershov I.F., Shashkova T.I., Ivanisenko N.V., Kardymon O.L., Semenenko T.A., 
Naroditsky B.S., Logunov D.Yu., Gintsburg A.L. Mathematical model for assessing the level of cross-immunity 
between strains of influenza virus subtype H3N2. Problems of Virology (Voprosy Virusologii). 2023; 68(3): 252-
264. DOI: https://doi.org/10.36233/0507-4088-179 EDN: https://elibrary.ru/rexvea
For correspondence: Marina N. Asatryan, PhD (Med.), Senior Researcher, Epidemiological Cybernetics Group 
of the Epidemiology Department, National Research Center for Epidemiology and Microbiology named after Hon-
orary Academician N.F. Gamaleya, 123098, Moscow, Russia. E-mail: masatryan@gamaleya.org
Information about the authors:
Marina N. Asatryan, https://orcid.org/0000-0001-6273-8615
Boris I. Timofeev, https://orcid.org/0000-0001-7425-0457
Ilya S. Shmyr, https://orcid.org/0000-0002-8514-5174
Karlen R. Khachatryan, https://orcid.org/0000-0002-1934-532X
Dmitrii N. Shcherbinin, https://orcid.org/0000-0002-8518-1669 
Tatiana A. Timofeeva, https://orcid.org/0000-0002-8991-8525
Elita R. Gerasimuk, https://orcid.org/0000-0002-7364-163X
Vaagn G. Agasaryan, https://orcid.org/0009-0009-3824-7061
Ivan F. Ershov, https://orcid.org/0000-0002-3333-5347.
Tatyana I. Shashkova, https://orcid.org/0000-0002-8754-8727
Nikita V. Ivanisenko, https://orcid.org/0000-0002-0333-8117
Olga L. Kardymon, https://orcid.org/0000-0002-4827-8891
Tatyana A. Semenenko, https://orcid.org/0000-0002-6686-9011
Boris S. Naroditsky, https://orcid.org/0000-0001-5522-8238
Denis Yu. Logunov, https://orcid.org/0000-0003-4035-6581
Aleksander L. Gintsburg, https://orcid.org/0000-0003-1769-5059

https://crossmark.crossref.org/dialog/?doi=10.36233/0507-4088-179&domain=PDF&date_stamp=2023-07-06


253

ВОПРОСЫ ВИРУСОЛОГИИ. 2023; 68(3)
https://doi.org/10.36233/0507-4088-179

В ПОМОЩЬ ВИРУСОЛОГУ 

Contribution: the authors contributed equally to this article. 
Conflict of interest. The authors declare no conflicts of interest. 
Received 12 May 2023
Accepted 22 June 2023
Published 30 June 2023

ОРИГИНАЛЬНОЕ ИССЛЕДОВАНИЕ 
DOI: https://doi.org/10.36233/0507-4088-179

Математическая модель для оценки уровня перекрёстного 
иммунитета между штаммами вируса гриппа подтипа H3N2

Асатрян М.Н.1, Тимофеев Б.И.1, Шмыр И.С.1, Хачатрян К.Р.2, Щербинин Д.Н.1,  
Тимофеева Т.А.1, Герасимук Э.Р.3, Агасарян В.Г.1, Ершов И.Ф.1, Шашкова Т.И.4,  
Иванисенко Н.В.4, Кардымон О.Л.4, Семененко Т.А.1, Народицкий Б.С.1,  
Логунов Д.Ю.1, Гинцбург А.Л.1

1ФГБУ «Национальный исследовательский центр эпидемиологии и микробиологии имени почетного академика  
Н.Ф. Гамалеи», 123098, г. Москва, Россия; 
2ФГАОУ ВО Национальный исследовательский университет «Высшая школа экономики», 123458, г. Москва, 
Россия; 
3Государственный университет «Дубна», 141982, г. Дубна, Россия; 
4Институт искусственного интеллекта, 121170, г. Москва, Россия

Введение. Всемирная организация здравоохранения (ВОЗ) регулярно обновляет рекомендации по вакци-
нам против гриппа с целью достижения их максимального соответствия очередным циркулирующим штам-
мам. Тем не менее на протяжении нескольких сезонов эффективность вакцины против гриппа А, а именно 
её компоненты H3N2, определялась как низкая. 
Цель исследования – разработка математической модели перекрёстного иммунитета на основании имею-
щегося массива опубликованных ВОЗ данных реакции торможения гемагглютинации (РТГА).
Материалы и методы. В настоящей работе представлена математическая модель, основанная на нахож-
дении с помощью регрессионного анализа зависимости титров РТГА от замен в антигенных сайтах после-
довательностей. Разработанная нами компьютерная программа имеет возможность обрабатывать данные 
(GISAID, NCBI и др.) и формировать в режиме реального времени базы данных согласно поставленным 
задачам.
Результаты. На основе наших исследований был вычленен дополнительный антигенный сайт F. Разница в 
1,6 раза скорректированного R2 на подмножествах вирусов, выращенных в культуре клеток и культивируе-
мых в куриных эмбрионах, демонстрирует обоснованность нашего решения о разделении первоначального 
массива данных по пассажным историям. Нами введено понятие степени гомологичности между двумя про-
извольными штаммами, которая принимает значение функции, зависящей от дистанции Хэмминга, и пока-
зано, что результаты регрессии существенно зависят от выбора функции. Проведённый анализ показал, что 
наиболее значимыми антигенными сайтами являются A, B и E. Полученные результаты прогноза титров РТГА 
показали достаточно хороший результат, сопоставимый с аналогичными работами наших коллег. 
Заключение. Предложенный метод может послужить хорошим инструментом для будущих прогнозов с 
дальнейшим изучением для подтверждения его устойчивости.

Ключевые слова: вирус гриппа; подтип H3N2; титры РТГА; перекрёстный иммунитет; антигенное рас-
стояние; антигенный сайт; дистанция Хэмминга; регрессионный анализ; эпидемио-
логическая модель; иммунный ландшафт; вакцинный штамм

Для цитирования: Асатрян М.Н., Тимофеев Б.И., Шмыр И.С., Хачатрян К.Р., Щербинин Д.Н., Тимофее-
ва Т.А., Герасимук Э.Р., Агасарян В.Г., Ершов И.Ф., Шашкова Т.И., Иванисенко Н.В., Кардымон О.Л., Семе-
ненко Т.А., Народицкий Б.С., Логунов Д.Ю., Гинцбург А.Л. Математическая модель для оценки уровня пе-
рекрёстного иммунитета между штаммами вируса гриппа подтипа H3N2. Вопросы вирусологии. 2023; 68(3): 
252-264. DOI: https://doi.org/10.36233/0507-4088-179 EDN: https://elibrary.ru/rexvea
Для корреспонденции: Асатрян Марина Норайровна, канд. мед. наук, старший научный сотрудник группы 
эпидемиологической кибернетики отдела эпидемиологии ФГБУ «Национальный исследовательский центр 
эпидемиологии и микробиологии имени почетного академика Н.Ф. Гамалеи», 123098, г. Москва, Россия. 
E-mail: masatryan@gamaleya.org

Участие авторов: все авторы сделали эквивалентный вклад в подготовку публикации.
Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.
Поступила 12.05.2023
Принята в печать 22.06.2023
Опубликована 30.06.2023



254

PROBLEMS OF VIROLOGY (VOPROSY VIRUSOLOGII). 2023; 68(3)
https://doi.org/10.36233/0507-4088-179

TO HELP THE VIROLOGIST 

Introduction 
The World Health Organization (WHO) Global 

Influenza Surveillance and Response Network (GISRS) 
monitors and analyzes the evolution and epidemiology 
of influenza viruses with the main goal of selecting 
a vaccine strain and improving this process through 
research aimed at a better understanding of evolutionary 
variability, distribution factors in combination with 
the immunological landscape of the population and 
cross-immunity [1]. At the same time, WHO regularly 
updates recommendations for influenza vaccines in order 
to achieve their maximum compliance with the next 
circulating strains.

Nevertheless, over several seasons, the effectiveness 
of the influenza A vaccine, namely its H3N2 component, 
was determined to be low compared to other strains 
[2–5]. The reason for the low efficiency can be several 
factors. For example, characteristic adaptive changes 
during passaging of the recommended strain in chicken 
embryos during the production of vaccines [6]. Since the 
development, large-scale production and distribution of 
a vaccine takes many months, eventually the prevalence 
of circulating strains in some seasons will change 
significantly by the coming season [7]. But even if the 
recommended vaccine is well matched against circulating 
strains, its effectiveness could be adversely affected by 
the existing immune landscape [ 8]. Therefore, prediction 
of the evolutionary variability of the influenza virus is 
still of great interest for public health [9–12]. 

The most promising direction in this area is the 
construction of computer models that can be used to 
combine various modeling approaches, use multiple 
data sources with the ability to interpret the results for 
recommendations when choosing a vaccine strain. This 
requires close cooperation between scientists from 
different fields and directions, working at all levels of 
epidemiological surveillance and selection of vaccine 
strains, as well as model developers, epidemiologists and 
clinicians [10, 13, 14]. 

The team of the National Research Center of 
Epidemiology and Microbiology named after Honorary 
Academician N.F. Gamaleya in 2020 developed and 
successfully registered (certificate of registration 
No. 2020617965 dated July 15, 2020) the computer 
program Influenza IDE – an epidemiological model 
(EM) across continents with a simplified model of cross-
immunity and a constantly updated database (of various 
types and subtypes of the influenza virus) Influenza DB. 
An important feature of EM is the possibility of forming 
the zero immune landscape of the population and then, 
after step-by-step simulation of the spread of the influenza 
virus, obtaining an immune landscape on the first day of 
the next season. The epidemiological model of the spread 
of the influenza virus among the world population over 
several seasons, developed using the agent approach, is 
presented in the form of implemented models: population 
behavior model, model of infectious process and infection 
model (based on the immune response in the body of an 
individual agent (person), taking into account the immune 
memory and the cross-immunity model). The computer 

program is designed to integrate various cross-immunity 
models.

A significant number of works on the study of cross-
immunity is based on the discovery of a relationship 
between hemagglutination-inhibition antibody (HAI) 
titers and differences in the genetic sequences of 
viruses. To find this relationship, researchers use various 
mathematical methods, including regression analysis [15–
18]. At the same time, various functions from HAI titers 
are used as a measure of cross-immunity. So, in the work 
of F.M. Burnet and D. Lush [19] introduced a function 
designated as an indicator of vaccine effectiveness  
Rij = cij / cii, where cij is the concentration (dilution) value 
of serum to virus i in HAI assay with virus j, cii is the 
concentration (dilution) value of serum i in HAI assay 
with original virus, where the concentration (dilution) 
of serum in HAI assay is the reciprocal of the titer of 
HAI assay. Researchers I. Archetti and F.L. Horsfall 
[20] introduced the geometric mean of the above ratios 
(RijRji)

1/2 as a measure of antigenic variability in their 
work. In later works, which laid the foundation for the 
currently widely used antigenic cartography, A. Lapedes 
and R. Farber [21], D.J. Smith et al. [22] demonstrated 
that it is possible to construct a low-dimensional form 
space in which antibodies and antigens are considered 
as points, and the distance between them is denoted 
as antigenic distance. As a measure of distance Dij, the 
logarithm of base 2 RTGA titers and the log2(Rij), 0,5 × 
log2(RijRji) values were used [15–17].

As a measure of the difference between sequences, 
either a simple Hamming distance or a function 
depending on it is usually used. The most frequently 
used model in the considered works is the consolidation 
of amino acid positions into antigenic sites [23–25]. In 
such cases, the Hamming distance between antigenic 
sites is considered [16–18]. But there are also complex 
cases when physicochemical factors of differences in 
amino acid positions, for example, glycosylation, act as a 
measure of the difference between antigenic sites [18, 26]. 
As materials for building models, limited datasets were 
used, including only reference strains, which reduces 
objectivity. In this paper, we present a cross-immunity 
regression model based on the entire available array 
of WHO-published HAI data, which will improve the 
accuracy of the model, increase its objectivity and 
testability.

The use of an adequate epidemiological model with a 
verified cross-immunity model will improve the process 
of selecting the necessary vaccine strains for a more 
successful fight against the influenza virus. 

The study purpose is to develop a mathematical 
model of cross-immunity based on the available array 
of seasonal serological testing data published by WHO 
(HAI assay). 

Materials and methods
When forming the Influenza DB data array, 

information was used from WHO’s published seasonal 
data on the results of HAI testing and data (sequences 
+ accompanying information) from the GISAID (Global 
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reactivity of ferret antibodies against reference strains 
that inhibit the agglutination of guinea pig erythrocytes 
by the tested influenza viruses. Due to the fact that WHO 
in 2008-2009 found a noticeable effect of neuraminidase 
and various sources of erythrocytes (turkey, human, guinea 
pig) on the results of HAI assay, in further studies we 
used only HAI assay tables from 2009 to 2022 performed 
on guinea pig erythrocytes with the addition of 20nM 
Oseltamivir, which is used to exclude the influence of 
neuraminidase. Despite the proposed international coding 
of viruses, researchers from all over the world encounter 
inaccurate annotations when depositing sequences in 
public databases [34]. Therefore, a separate task in our 
work was the procedure for processing and preparing 
published HAI assay tables for further use. Also, as a 
result of the preparation, each sequence was assigned a 
unique identifier. 

Modified HAI titers act as a measure of cross-immunity 
in our model. To do this, the values of the published HAI 
titers are converted to the logarithm to the base 2. Next, 
the data is averaged according to the algorithm: subsets 
are combined in accordance with similar pairs of strain 
identifiers (reference and test); in each obtained subset, 
the arithmetic mean of the modified titers is calculated for 
the same pairs of strain identifiers.

It should be noted that the cultivation (passage) of viruses 
performed in chicken embryos may cause characteristic 
adaptive substitutions that change the receptor specificity 
of viruses and the nature of glycosylation [6, 35] and, as 
a result, affect cross-reactivity in HAI data. Therefore, as 
a result of the analysis of the primary data, we decided 
to single out several subsets in the initial HAI data array: 

– with passage history in chick embryos (Egg-
Egg 4226); 

– with passage history in cell culture (Cell-Cell 28 621); 
– with mixed passage history (Egg_s-Cell_t 16 463): 

reference viruses (to obtain control antisera) cultured in 
chick embryos in combination with test viruses grown in 
cell culture; 

– with mixed passage history (Cell_s-Egg_t 5032): 
reference viruses (to obtain control antisera) grown in cell 
culture in combination with test viruses cultured in chick 
embryos.

Our solution was based on numerous comparative 
studies of antigenic mutations of the H3N2 influenza virus 
during cultivation in chicken embryos and cell passages 
[36–38]. Considering that the amount of data with a 
passage history of Cell-Cell and Egg_s-Cell_t is several 
times larger than the dimension of subsets with passage 
histories of Egg-Egg and Cell_s-Egg_t, we performed 
regression analysis on the data of the first two subsets. 

Preparing data from the GISAID platform
The GISAID international platform was launched 

in 2008 and has since offered a reliable mechanism for 
the exchange of all genetic and influenza-related data for 
researchers, scientists and healthcare professionals [39]. 
As in the case of HAI data, when depositing sequences 
(when manually entering data, etc.), the format of the 
downloaded data is often distorted and misclassified. 

Initiative on Sharing All Influenza Data) platform. The 
computer program Influenza IDE [27] also provides an 
additional module Influenza DP, which is a universal 
database processor (GISAID, NCBI, etc.).

To study patterns in the cross-immunity model, multiple 
regression analysis (linear regression) was used using 
the least squares method (LSM) and the non-negative 
LSM method [28] to estimate the regression parameters, 
represented by formula (1): 

Modified_titre = c0 + c1 × As1 + c2 × As2 + c3 × 
As3 + c4 × As4 + c5 × As5 + c6 × As6, (1)

where the modified HAI titers are represented as the 
function value, as arguments As1, As2, As3, As3, As4, 
As5, As6 are the values of the degree of homology of 
antigenic sites (As) A, B, C, D, E, F, respectively, and 
c0, c1, c2, c3, c4, c5, c6 – parameters (coefficients) of 
the model.

For regression arguments, we relied on our own 
method for determining antigenic sites. The term 
“antigenic site” was introduced by Gerhard and 
Webster in 1978 to describe specific monoclonal 
antibodies. Antibodies that competed with each other 
were considered to bind the same antigenic site. Each 
antigenic site may contain one or more epitopes – 
different sets of amino acids on the antigen that come 
into contact with the amino acids of the antibodies. 
Competition between antibodies that bind the same 
antigenic site suggests that the epitopes at a given 
site physically overlap, but may be different, and one 
antibody molecule shields the entire antigenic site. 

Also, to account for differences between strains by 
antigenic sites, we introduced the concept of homology 
degree and defined it for two randomly selected strains 
as a decreasing function of the Hamming distance, taking 
values from 1 to 0. The justification and selection of 
the functions used are described in detail in the section 
“Results”. The Stats package version 4.0.3 of the R 
programming language was used to train the regression 
model. The Pandas package version 1.4.2 of the Python 
programming language was used for data preprocessing. 
The stability of the predictive ability of the cross-
immunity model was analyzed on retrospective data. 
As a measure of the adequacy of the model, we used the 
coefficient of determination R2 [29], and as a measure of 
the accuracy of the forecast – the index of reproducibility 
of titles for one (± 1) and (or) two (±2) dilutions. We 
relied on numerous studies in which, when comparing 
the results of HAI assay for each sample within one 
laboratory or between several, the titers were considered 
equivalent if they differed by no more than one dilution 
(i.e. by 2 times) [30–32].

Building an Influenza DB Dataset  
to Study a Cross-Immunity Model

Preparation of experimental HAI data
WHO reports on influenza have been published every 

season since 2005 and are in the public domain [33]. 
The presented antibody titers in HAI reveal the antigenic 
properties of reference and test strains based on the cross-
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This, in turn, makes it difficult to analyze and process 
the available information to improve approaches (meth-
ods) to the selection of vaccine strains. Therefore, for 
further research using the computer program Influenza 
IDE and the universal processor Influenza DP built into 
it, we carried out a thorough cleaning and reconciliation 
of the available data. After the completion of the da-
ta verification process, the amino acid sequences were 
aligned to the corresponding reference sequence: H3N2: 
A/Aichi/2/1968, 566 AA, including the signal peptide, 
using the original fast lexical algorithm (maximum ami-
no acid match between the reference sequence and the 
sample with minimization of the number of positions de-
letions and insertions) or the Smith–Waterman method 
[40]. Samples with differences of more than 20% from 
the reference were discarded. Brief statistical character-
istics of the data are presented in Table 1. 

Results

Determination of antigenic sites of H3N2 influenza virus 
hemagglutinin

The combination of amino acid sequences into antigenic 
sites was carried out according to our own method 
with the inclusion of an additional antigenic site F. To 
determine which antigenic site of the influenza virus a 
particular position belongs to, we primarily focused on 
experimental studies [24]. Subsequently, we expanded 
the number of positions in antigenic sites by examining 
the variability of each hemagglutinin position starting 
from 1968. In the array of sequences obtained at the first 
stage, the occurrence of each amino acid in each position 
was counted. In parallel, an analysis was carried out for 
the ability of one or another amino acid of hemagglutinin 
to interact with antibodies, determining the immersion or, 
conversely, the exposure of amino acids on the surface of 
hemagglutinin. During the work, the GETAREA software 
[41] was used, the input of which was the tertiary structures 
of hemagglutinin molecules from the PDB (Protein Data 
Bank) database [42]. As a result, based on the variability 
of positions, their exposure in the tertiary structure of 
the protein on the surface, and also taking into account 
their maximum proximity to existing antigenic sites, 
variable exposed positions were determined, which were 
assigned to existing antigenic sites. Moreover, in addition 
to the well-known antigenic sites A, B, C, D, and E, we 
identified another antigenic site, respectively, named F. 
This antigenic site consists of many similar epitopes in the 
stem part of the hemagglutinin molecule. The database of 
tertiary structures contains more than 20 hemagglutinin 
complexes with monoclonal antibodies to this site. This 
site is described in detail in a study conducted by D.N. 
Shcherbinin et al. [43].

Thus, 6 antigenic sites were identified for hemagglutinin 
subtype H3. Below is a list of amino acid positions that 
make up these antigenic sites, a total of 109 positions 
(Table 2). Numbering is given by mature hemagglutinin 
H3 [44]. It should be noted that the antigenic site F, 
unlike sites A–E, is located mainly in the HA2 subunit of 
hemagglutinin.

The information obtained was uploaded to the Influen-
za DB database and served as a template for combining 
the existing array with aligned amino acid sequences into 
antigenic sites. Further, the array with antigenic sequenc-
es was expanded by adding information about the content 
of the number of amino acid substitutions between any 
two strains in each of the 6 antigenic sites. As a result 
of the above actions, we obtained for each of the 6 anti-
genic sites for randomly selected or separate (each) pair 
of strains both the value of HAI titers and the number 
of amino acid substitutions (Hamming distance). At the 
same time, substitutions in antigenic sites, regardless of 
the type and specific position, are accepted to be equiv-
alent. In our model, sequences that do not have substitu-
tions in antigenic sites, but have changes in other posi-
tions, were considered antigenically identical. 

Development of a mathematical model of cross-
immunity of the influenza virus

Analysis and selection of a function to assess the degree 
of homology

The subsets with the largest number of observations 
were selected for regression analysis: Cell-Cell 28,621 
and Egg_s-Cell_t 16,463. Also, instead of a simple 
Hamming distance, we decided to use a function from 
it, thereby introducing the concept of the degree of 
homology between two arbitrary antigenic sequences, 
indicating how close the antigenic sites of two different 
strains are to each other in terms of antigenic properties, 
and taking the value of this function. It was necessary to 
choose a function that could meet the requirements and 
would not contradict biological processes: in a situation 
of complete (absolute) homology of two strains (in the 
absence of substitutions in antigenic sites), the function 
takes the value 1, and in the absence of homology 
(changes were noted in each amino acid position included 
in the antigenic site) the value of the function must be 
equal to 0 (or close to 0). Obviously, the function should 
decrease with increasing Hamming distance.

In addition, as shown in [45], the function that depends 
on the Hamming distance and describes the cross-
reactivity of antigens is concave. Based on this, we 
introduced an additional restriction for the function we 
are considering, namely, that it is concave or at least not 
convex, i.e. each subsequent substitution contributes no 
more to the decrease in homology than the previous one.

According to the results of studies by colleagues 
[16, 45], which showed that when the number of amino 
acid substitutions in the antigenic site is equal to or 
greater than 7, cross-reactivity of recognizing antibodies 
between strains is practically not observed, we introduced 
an additional requirement for the desired function: 
for 7 substitutions, the value function should take such 
a small value that it can be neglected. We also used the 
function 1 – x / 8 as the top-limiting function under 
consideration (for the values x = {1; 7}), and we took 
the value 1 – 7 / 8 = 0.125 as the significance threshold 
for 7 substitutions. 

Taking into account the specified requirements, the fol-
lowing functions were considered (Figure): 
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• 1 – х / 8;
• exp(–a × x), where a = 1/3; 1/2; 1; 
• 1 / (a × x + 1), where a = 1; 2; 3.
The values of HAI titers indicated in the original WHO 

tables as < (<40) in our model were replaced by a value 
of 20. We take a fixed value of the smallest value of the 
modified titer as the c0 coefficient, i.e. log2(20) ≈ 4.322. 

The left part of Table 3 presents the results for a subset 
with a passage history on cell culture (Cell-Cell); in the 

right part of the table – with a mixed passage history 
(Egg_s-Cell_t).

Consideration of the selected functions was carried out 
by cross-validation: the entire amount of data was ran-
domly divided 5 times in the ratio of 80% to 20%, where 
the first part was taken as a training sample, and the sec-
ond – for a test one. The results were evaluated by the 
highest average value of the adjusted R2 obtained for the 
test samples. We also ranked the results for all functions. 

Table 1. Data statistical characteristic
Таблица 1. Статистическая характеристика данных

Parameter
Показатель

Value
Значение 

Cell-Cell Egg_s-Cell_t

Total number of observations
Общее количество наблюдений

28 621 16 463

Total number of pairs of strains
Общее количество пар штаммов

21 394 12 444

Number of observations in the reporting period
Количество наблюдений в отчетном периоде

2009 21 35

2010 46 94

2011 132 461

2012 2142 1761

2013 1738 2447

2014 2891 2201

2015 1907 1520

2016 1209 1003

2017 1948 1279

2018 659 164

2019 2236 950

2020 2496 1064

2021 902 281

2022 10294 3203

Titer value, Ме [Q1; Q3]
Значение титра 

160 [40; 320] 160 [40; 320]

Distribution by titer values
Распределение по значениям титра

20 3404 (11,9%) 1858 (11,3%)

40 4154 (14,5%) 2514 (15,3%)

80 4232 (14,8%) 3852 (23,4%)

160 6328 (22,1%) 3794 (23%)

320 6170 (21,6%) 2446 (14,9%)

640 3491 (12,2%) 1410 (8,6%)

1280 772 (2,7%) 511 (3,1%)

2560 60 (0,2%) 75 (0,5%)

5120 10 (< 0,1%) 3 (< 0,1%)

Hamming distance across antigenic sites
Дистанция Хэмминга по антигенным сайтам

A 2 [0; 4] 2 [0; 3]

B 2 [1; 4] 3 [2; 4]

C 1 [0; 2] 1 [0; 2]

D 1 [0; 1] 1 [1; 2]

E 1 [0; 2] 1 [0; 1]

F 1 [0; 2] 1 [0; 2]
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When comparing the results between subsets of Cell-Cell 
and Egg_s-Cell_t, almost complete correspondence of 
ranks (Spearman’s rank correlation coefficient ρ = 0.96) 
of functions was observed in relation to subsets. Mean-
while, when comparing the values of the coefficients of 
determination for two subsets, the corresponding highest 
values were noted for the Cell-Cell subset (by 1.6 times), 
which confirms the expediency of separating the avail-
able data by passages, and also confirms that passages on 
chicken embryos contain characteristic adaptive substi-
tutions, changing the receptor specificity of viruses and 
the nature of glycosylation [6, 35] and, as a result, affect 
cross-reactivity in HAI assay. Therefore, we carried out 
further calculations on the Cell-Cell subset. As a function 
describing the degree of homology, exp (–x / 3) was cho-
sen, which showed the best result for the Cell-Cell subset 
and the best result for the Egg_s-Cell_t subset. 

The results of regression analysis with the Cell-Cell 
subset (21,580 observations after averaging over pairs of 
strains) using the selected function with the requirement 
that the coefficients be non-negative are presented in  

Table. 4. In the first column of the table, in addition to the 
corrected R2 already mentioned above, the designations 
of the corresponding antigenic sites are presented, then 
in the Estimate column the values of the desired C1–6 re-
gression coefficients are given, in the third column, Stan-
dard error, the standard deviations of these coefficients 
are listed. The line Standard deviation represents the stan-
dard deviation of the dependent variable (modified titers). 
The contribution of each antigenic site can be judged by 
the value of its coefficient. The greater the value of the 
coefficient at a certain antigenic site, the greater its con-
tribution to cross-immunity. After determining the coeffi-
cients of the regression model, the statistical hypothesis is 
tested about the equality to zero of the true values of the 
coefficients according to Student’s criterion with a signif-
icance level of 0.05. The results of the test are presented 
in the fifth column, Pr(> |t|) p-value, the probability that 
the t-statistic is greater than the t-value modulus (ratio of 
coefficient values to their standard deviation). If this val-
ue is less than the confidence level of 0.05, the hypothesis 
is rejected and the parameter is considered significant. In 

Table 2. Amino acid positions at antigenic sites
Таблица 2. Аминокислотные позиции в антигенных сайтах

Site
Сайт

Amino acid position numbers
Номера аминокислотных позиций

A 121, 122, 124, 126, 131, 133, 135, 137, 138, 140, 142, 143, 144,  145, 146

B 128, 155, 156, 157, 158, 159, 160, 163, 186, 188, 189, 190, 192, 193, 194, 196, 197, 198, 199

C 45, 47, 48, 49, 50, 53, 54, 271, 273, 275, 276, 278, 280, 304, 311, 312 

D 171, 172, 173, 201, 202, 207, 208, 212, 213, 214, 217, 219, 220, 221, 222, 223, 225, 226, 227, 229, 230, 242, 244, 246, 248 

E 57, 58, 62, 63, 75, 78, 82, 83, 88, 92, 94, 96, 260, 261, 262 

F 25, 31, 33, 326, 347, 361, 375, 384, 386, 450, 452, 453, 476, 479, 484, 487, 489, 501, 505

Figure. Functions for evaluating the degree of homology.
Рисунок. Функции для оценки степени гомологичности.
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our case, all antigenic sites, except for C and F, were rec-
ognized as significant. The coefficients at the antigenic 
site C and F took the value 0, and this is equivalent to 
insignificance.

Analysis of the stability of the predictive ability  
of the cross-immunity model based on retrospective data

For a more detailed understanding of the influence of 
the time factor and the number of observations involved 
in tuning the model on the accuracy of the forecast, the 
next step is to divide the subset of Cell-Cell_2009–2022 
into different time periods (1-, 2-, 3-,4-, 5-year) adjustable 
periods with a forecast for each subsequent year. The 
full results of the regression analysis are presented in 
Appendix. 

Based on presented in table 5.1 and 5.2 of the results, 
we can state that the adjusted R2, which takes a value not 
higher than 0.3 in adjustable periods, begins to increase 
significantly from 2019, changing from 0.32 to 0.64 
(the more years in the adjustable interval, the lower the 
value). 2021 is out of this trend due to low incidence 
and little data due to the COVID-19 pandemic. The 
dynamics of the value of the adjusted R2 is also directly 

reflected in the forecast periods, taking values no higher 
than 0.4 (including negative ones) and further increasing 
from 2020 (from 0.47 to 0.6).

We also evaluated the predictive ability of the 
results presented in Table. 5.1 and 5.2, according 
to the reproducibility of titers for one (±1) and two 
(±2) dilutions. When comparing the calculated titles 
with those published in the forecast periods, with 
the exception of 2016 and 2021 (a small number of 
observations – 841 and 478, respectively) and 2015 (when 
the recommended vaccine strains failed to provide 
effective protection), the reproducibility of titers per (±1) 
dilution was demonstrated in more than 50% of cases, and 
at times reached 67% of cases. As for the reproducibility 
of titers at two (±2) dilutions, approximately 90% of cases 
and above are consistently observed over all time periods.

The results of regression analysis over adjustable 
(1-5year time intervals) demonstrated the significance 
of the contribution of each antigenic site to the immune 
response. The coefficients at antigenic sites A and B 
have high values in all forecast periods. This can be seen 
especially clearly on 3–5-year customizable periods. 
Antigenic site C actually takes on null values only with 

Table 3. R2 values by passage histories for the considered functions

Таблица 3. Значения R2 по пассажным историям для рассматриваемых функций

Function
Функция

Cell-Cell (21 580 pairs of strains 2009–2022)
(21 580 пар штаммов 2009–2022)

Egg_s-Cell_t (12 444 pairs of strains 2009–2022)
(12 444 пары штаммов 2009–2022) 

1_20% 2_20% 3_20% 4_20% 5_20% ср._20% 1_20% 2_20% 3_20% 4_20% 5_20% ср._20%

1 – x / 8 0,457 0,483 0,471 0,486 0,490 0,477 0,273 0,252 0,277 0,282 0,255 0,268

exp(–x / 3) 0,494 0,519 0,504 0,520 0,530 0,513 0,326 0,293 0,317 0,336 0,295 0,313

exp(–x / 2) 0,476 0,498 0,478 0,494 0,509 0,491 0,331 0,294 0,313 0,328 0,293 0,312

exp(–x) 0,366 0,380 0,346 0,363 0,393 0,370 0,253 0,205 0,200 0,242 0,207 0,222

1 / (x + 1) 0,441 0,461 0,438 0,453 0,471 0,453 0,312 0,272 0,283 0,315 0,275 0,292

1 / (2x + 1) 0,376 0,391 0,358 0,375 0,399 0,380 0,268 0,220 0,216 0,258 0,224 0,237

1 / (3x + 1) 0,328 0,340 0,301 0,320 0,348 0,327 0,213 0,162 0,149 0,196 0,168 0,178

Table 4. Regression results for the exp(–x / 3) function
Таблица 4. Результаты регрессии для функции exp(–x / 3)

Аntigenic sites 
Антигенные сайты

Cell-Cell_2009–2022 (21 580 pairs of strains)
(21 580 пар штаммов)

estimate
значение 

standard error
cтандартная ошибка P-r(> |t|) p-value

А 1,233 0,034 <0,001

B 2,506 0,034 <0,001

C 0,000   

D 0,083 0,027 0,002

E 0,622 0,039 <0,001

F 0,000   

CR2 0,514   

Standard deviation
Стандартное отклонение 1,161   
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Table 5.1. R2

Таблица 5.1. R2

Year 
Год

1 year
год

2 year
года

3 year
года

4 year
года

5 year
лет

2014 0,135 0,099 0,099 0,101 0,101

2015 –0,223 –0,204 –0,354 –0,355 –0,348

2016 0,043 –0,225 –0,278 –0,540 –0,546

2017 0,005 0,198 0,158 0,083 0,071

2018 0,092 0,001 0,100 0,071 0,052

2019 0,124 0,244 0,405 0,318 0,277

2020 0,596 0,592 0,577 0,561 0,543

2021 0,044 0,095 0,125 0,135 0,128

2022 0,600 0,472 0,497 0,540 0,561

Table 5.2. ±1 dilution
Таблица 5.2. ±1 разведение

Year 
Год

1 year
год

2 year
года

3 year
года

4 year
года

5 year
лет

2014 67,84 67,94 67,94 67,24 67,24

2015 46,46 46,69 45,67 45,59 45,75

2016 40,43 38,41 36,50 34,48 34,36

2017 56,40 59,40 63,40 55,83 59,54

2018 65,27 59,62 62,97 60,88 61,09

2019 45,44 50,94 59,41 57,20 57,57

2020 57,70 57,03 58,33 57,32 56,79

2021 46,03 48,12 50,63 53,35 51,88

2022 55,27 50,18 54,16 55,66 60,49

rare exceptions. Almost at all time intervals, a stable 
contribution, commensurate with the contribution of 
A and B, also demonstrates the antigenic site D, but 
only until 2018, followed by a sharp zeroing. Moderate 
compared to antigenic sites A and B, but at the same 
time stable significance is demonstrated by the antigenic 
site E with a noticeable increase by 2018–2021. The 
contribution of the antigenic site F varies diametrically 
depending on time intervals, from stable significant to 
zero. It should be noted that, in general, the results of the 
regression do not reveal a significant dependence on the 
number of years included in the adjusted period. At the 
same time, forecast results are significantly worse in those 
seasons when there is little data in the forecast period. 
In addition, our correlation analysis showed that there 
is no correlation between the values of the coefficients 
at antigenic sites and the number of substitutions in 
positions. Taking into account the fact that the number 
of observations only for 2022 is more than 1/3 of the 
total volume of observations for 2009–2022, it was 
decided to conduct separate calculations for observations 
in 2022. Figure 6 shows the results of calculating the 
predictive ability of the developed cross-immunity model 
based on the published data of the RTGA 2022 (spring 
and autumn seasons).

Discussion
The analysis of the scientific literature demonstrated 

that in most studies the assessment of cross-immunity 
was carried out on a limited data set, including only 
reference strains, which reduces the objectivity of studies 
and makes it difficult to verify the forecast. Carrying out 
calculations based on the entire available array of HAI 
data published by WHO made it possible to bypass these 
limitations. With the help of the built-in additional module 
Influenza DP, which is a universal database processor 
(GISAID, NCBI, etc.), we have developed an algorithm 
that allows us to generate databases in real time according 
to the tasks for further analysis and calculations. To 
study the patterns in the cross–immunity model, subsets 
with the largest number of observations – Cell-Cell and 
Egg_s-Cell_t – were considered. We also introduced the 
concept of the degree of homology between two arbitrary 
strains, which takes the value of a function depending on 
the Hamming distance.

When considering functions for choosing a variant 
describing the degree of homology, a significant 
dependence of the values of the coefficient of 
determination on the type of function was noted. While 
all functions were subjected to the same necessary 
conditions corresponding to biological processes, the 
resulting adjusted R2 values fluctuated quite significantly 
and took values from 0.327 to 0.513 for the Cell-Cell 
subset and 0.178 to 0.313 for the Egg_s-Cell_t subset, 
respectively. Such a significant difference between the 
upper and lower limits of the indicator indicates that the 
use of a simple Hamming distance [16, 18] as a measure 
of homology can impose significant restrictions on the 
models used. The ranking of the results for all functions 
was also carried out. When comparing the results with 

Table 6. Regression results for 2022 data
Таблица 6. Результаты регрессии по данным 2022 г.

Customizable period
Настраиваемые периоды 2022 г.

February 2022 report data
Данные февральского  

отчета 2022 г.

Number of observations
Количество наблюдений

8183 1994

Adjusted R2

Скорректированный R2
0,728 0,625

Standard deviation
Стандартное отклонение

0,874 0,966

Forecast periods
Прогнозные периоды

September 2022 report data
Данные сентябрьского 

отчета 2022 г.

Number of observations
Количество наблюдений

6675

Adjusted R2

Cкорректированный R2
0,734

Standard deviation 
Стандартное отклонение

0,933

±1 dilution / разведение 69,33%

±2 dilution / разведения 98,73%
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analysis on the entire H3N2 HAI data set, obtained 
R2= 0.372, which is lower than our adjusted R2 = 0.523 on 
the entire Cell-Cell subset. The results of colleagues could 
be affected by the lack of separation of data by passage 
history and time intervals. Also, the results may have been 
influenced by the use of a simple Hamming distance. It 
is important to recognize that, despite all the efforts to 
standardize the conduct of RTGA [32] and regardless of 
the chosen approach for studying the dependence of HAI 
titers on amino acid substitutions, the initially inherent 
high error of the HAI method (17%) [46] remains a factor 
that significantly affects the results.

Conclusions
Based on an epidemiological model and with a well-

tuned cross-immunity model, we have developed a com-
puter program that provides the ability to predict the most 
common strains, taking into account the influence of the 
immune landscape and select a vaccine strain for the up-
coming season.

The ability to carry out calculations based on the entire 
available array of WHO-published seasonal HAI data, the 
observed improvement in results over recent years (start-
ing in 2019), as well as a large volume of observations and 
the results of the forecast for 2022 (adjusted R2 = 0.734; 
reproducibility of titers per one (± 1) dilution in 69.33% 
of cases) allow to assert that the proposed method can 
serve as a good tool for future forecasts with further study 
to confirm its stability.

In turn, the advantage of using the Influenza IDE 
computer program with a constantly updated database of 
various types and subtypes of the influenza virus in the 
future will allow reproducing the results obtained on other 
variants and subtypes of the influenza virus and thereby 
testing the developed model and expanding the spectrum 
of recommended vaccine strains. The experience and 
skills gained in determining antigenic sites in the future 
will make it possible to combine amino acid positions 
into antigenic sites according to several scenarios and 
making calculations already taking them into account. 
Further development of the cross-immunity model can 
be achieved by unilateral normalization of the titers of 
the entire array of test strains against reference strains, 
which will reduce the error associated with the individual 
characteristics of the experimental animals used. Also, 
the improvement of the model can be achieved by taking 
into account processes such as glycosylation. 
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