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Introduction. The WHO regularly updates influenza vaccine recommendations to maximize their match with
circulating strains. Nevertheless, the effectiveness of the influenza A vaccine, specifically its H,N, component, has
been low for several seasons.

The aim of the study is to develop a mathematical model of cross-immunity based on the array of published WHO
hemagglutination inhibition assay (HAI) data.

Materials and methods. In this study, a mathematical model was proposed, based on finding, using regression
analysis, the dependence of HAI titers on substitutions in antigenic sites of sequences. The computer program
we developed can process data (GISAID, NCBI, etc.) and create “real-time” databases according to the set tasks.
Results. Based on our research, an additional antigenic site F was identified. The difference in 1.6 times the
adjusted R?, on subsets of viruses grown in cell culture and grown in chicken embryos, demonstrates the validity of
our decision to divide the original data array by passage histories. We have introduced the concept of a degree of
homology between two arbitrary strains, which takes the value of a function depending on the Hamming distance,
and it has been shown that the regression results significantly depend on the choice of function. The provided
analysis showed that the most significant antigenic sites are A, B, and E. The obtained results on predicted HAI
titers showed a good enough result, comparable to similar work by our colleagues.

Conclusion. The proposed method could serve as a useful tool for future forecasts, with further study to confirm
its sustainability.
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BBepneHue. BcemupHas opraHusaums 3gpaBooxpaHeHuns (BO3) perynspHo ob6HOBRSET pekoMeHAaumm no BakLm-
HaM NPOTUB rpunna ¢ Lenbko AOCTMKEHUSA UX MaKCUMarnbHOro COOTBETCTBUS O4ePEHbBIM LIMPKYNUPYHOLLMM LUTaM-
MaMm. TeM He MeHee Ha NPOTSXEHNN HECKONbKMUX Ce30HOB 3(M(EKTUBHOCTL BaKLMHbLI MPOTKB rpunna A, a UMEHHO
€€ komnoHeHTbl H N, onpeaensnack kak Hu3kas.

Llenb nccnenosaHusa — paspabotka matemMaTu4eckon Mogeny NepekpeéCTHOro UMMyHUTETa Ha OCHOBaHUN UMEIO-
Lerocs maccusa onybnukoaHHbix BO3 gaHHbIX peakuuy TopMoxeHus remarrniotuHaumm (PTIA).

MaTepuanbl n Metoabl. B HacToswwen paboTe npefcTaBneHa matemaTnyeckast MOAenb, OCHOBaHHAsA Ha HaXOX-
OEHMN C MOMOLLLbIO PErpecCroHHOro aHanuaa 3asncnumoctn TuTpos PTIA OT 3aMeH B aHTUreHHbIX canTax nocre-
fosatensHocTen. PaspaboTaHHas HaMK KOMMbIOTEPHas NporpaMmMa MMeeT BO3MOXHOCTb 0bpabaTbiBaTb AaHHbIE
(GISAID, NCBI 1 gp.) n bopmupoBaTh B pexumMe pearnbHOro BpeMeHu 6a3bl JaHHbIX COrflacHO MOCTaBMEHHbIM
3agavam.

Pesynbrathl. Ha ocHOBe Halmx McCnegoBaHui Obin BblYNEHEH AOMOMHUTENbHBIA aHTUreHHbIN canT F. PasHuua B
1,6 pasa ckoppekTpoBaHHOro R? Ha NMOAMHOXECTBAX BMPYCOB, BbIPALLEHHbIX B KynbType KMETOK U KynbsTUBUpYe-
MbIX B KypVHbIX 3MOPUOHaX, AEMOHCTPMPYET 060CHOBAHHOCTb HALLEro PELLEHUst O Pa3aeneHuy nepBoHadYanbHoOro
MaccmBa AaHHbIX MO MAaCCaXHbIM MCTOPUSM. Hamn BBEAEHO NOHATUE CTEMNEeHW rOMONOrMYHOCTN MeXay ABYMS Npo-
N3BOMbHBLIMU LUTAMMaMK, KOTOpas NPUHUMAET 3HadYeHne hyHKLMM, 3aBUCALLEN OT AUCTaHUMU X3MMUHra, U NoKa-
3aHO, YTO pe3ynbTaThl PErpeccun CyLLIECTBEHHO 3aBUCAT OT BblGopa dyHKUuW. MNpoBEeAEHHbIN aHanmn3 nokasarn, Yto
Hanbornee 3Ha4MMbIMW aHTUIeHHbIMK canTamu siBnsoTcs A, B n E. MNMonyyeHHble pesynbratel nporHosa Tutpos PTIA
rokasanu JOCTaTOYHO XOPOLUMIA pe3ynsTaTt, CONOCTaBUMbIN C aHaNOrMYHbIMU paboTammn HaLLMX KOrner.
3akntoueHue. [peanoXeHHbI MeTog MOXET MOCIYXXWUTb XOPOLUMM MHCTPYMEHTOM Ans Oyayuimx nporHo3oB C
AanbHenWwnM nsyyeHnem Ans NoATBEPXAEHNS ero yCTOMYMBOCTY.

KnioueBble cnosa: supyc epunna; nodmun H,N,; mumpel PTIA; nepekpécmHbil uMMmyHUmMem, aHmu2eHHoe pac-
cmosiHUe, aHmuaeHHbIl calm; ducmaHyusi XaMMuUHaa; peapeccUOHHbIl aHanus; anudemuo-

io2udeckasi MoOeslb;, UMMYHHbIU naHowaghm, 8akyUHHbIU Wwmamm
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Introduction

The World Health Organization (WHO) Global
Influenza Surveillance and Response Network (GISRS)
monitors and analyzes the evolution and epidemiology
of influenza viruses with the main goal of selecting
a vaccine strain and improving this process through
research aimed at a better understanding of evolutionary
variability, distribution factors in combination with
the immunological landscape of the population and
cross-immunity [1]. At the same time, WHO regularly
updates recommendations for influenza vaccines in order
to achieve their maximum compliance with the next
circulating strains.

Nevertheless, over several seasons, the effectiveness
of the influenza A vaccine, namely its H,N, component,
was determined to be low compared to other strains
[2—-5]. The reason for the low efficiency can be several
factors. For example, characteristic adaptive changes
during passaging of the recommended strain in chicken
embryos during the production of vaccines [6]. Since the
development, large-scale production and distribution of
a vaccine takes many months, eventually the prevalence
of circulating strains in some seasons will change
significantly by the coming season [7]. But even if the
recommended vaccine is well matched against circulating
strains, its effectiveness could be adversely affected by
the existing immune landscape [ 8]. Therefore, prediction
of the evolutionary variability of the influenza virus is
still of great interest for public health [9-12].

The most promising direction in this area is the
construction of computer models that can be used to
combine various modeling approaches, use multiple
data sources with the ability to interpret the results for
recommendations when choosing a vaccine strain. This
requires close cooperation between scientists from
different fields and directions, working at all levels of
epidemiological surveillance and selection of vaccine
strains, as well as model developers, epidemiologists and
clinicians [10, 13, 14].

The team of the National Research Center of
Epidemiology and Microbiology named after Honorary
Academician N.F. Gamaleya in 2020 developed and
successfully registered (certificate of registration
No. 2020617965 dated July 15, 2020) the computer
program Influenza IDE — an epidemiological model
(EM) across continents with a simplified model of cross-
immunity and a constantly updated database (of various
types and subtypes of the influenza virus) Influenza DB.
An important feature of EM is the possibility of forming
the zero immune landscape of the population and then,
after step-by-step simulation of the spread of the influenza
virus, obtaining an immune landscape on the first day of
the next season. The epidemiological model of the spread
of the influenza virus among the world population over
several seasons, developed using the agent approach, is
presented in the form of implemented models: population
behavior model, model of infectious process and infection
model (based on the immune response in the body of an
individual agent (person), taking into account the immune
memory and the cross-immunity model). The computer
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program is designed to integrate various cross-immunity
models.

A significant number of works on the study of cross-
immunity is based on the discovery of a relationship
between hemagglutination-inhibition antibody (HAI)
titers and differences in the genetic sequences of
viruses. To find this relationship, researchers use various
mathematical methods, including regression analysis [ 15—
18]. At the same time, various functions from HALI titers
are used as a measure of cross-immunity. So, in the work
of F.M. Burnet and D. Lush [19] introduced a function
designated as an indicator of vaccine effectiveness
R =c, /¢, where ¢, is the concentration (dilution) value
of sertm to virus i in HAI assay with virus j, ¢, is the
concentration (dilution) value of serum i in HAI assay
with original virus, where the concentration (dilution)
of serum in HAI assay is the reciprocal of the titer of
HAI assay. Researchers 1. Archetti and F.L. Horsfall
[20] introduced the geometric mean of the above ratios
(R,R,)"? as a measure of antigenic variability in their
work. In later works, which laid the foundation for the
currently widely used antigenic cartography, A. Lapedes
and R. Farber [21], D.J. Smith et al. [22] demonstrated
that it is possible to construct a low-dimensional form
space in which antibodies and antigens are considered
as points, and the distance between them is denoted
as antigenic distance. As a measure of distance D the
logarithm of base 2 RTGA titers and the log,(R ,)
logZ(R R ) values were used [15-17].

As a measure of the difference between sequences,
either a simple Hamming distance or a function
depending on it is usually used. The most frequently
used model in the considered works is the consolidation
of amino acid positions into antigenic sites [23-25]. In
such cases, the Hamming distance between antigenic
sites is considered [16—-18]. But there are also complex
cases when physicochemical factors of differences in
amino acid positions, for example, glycosylation, act as a
measure of the difference between antigenic sites [18, 26].
As materials for building models, limited datasets were
used, including only reference strains, which reduces
objectivity. In this paper, we present a cross-immunity
regression model based on the entire available array
of WHO-published HAI data, which will improve the
accuracy of the model, increase its objectivity and
testability.

The use of an adequate epidemiological model with a
verified cross-immunity model will improve the process
of selecting the necessary vaccine strains for a more
successful fight against the influenza virus.

The study purpose is to develop a mathematical
model of cross-immunity based on the available array
of seasonal serological testing data published by WHO
(HAI assay).

Materials and methods

When forming the Influenza DB data array,
information was used from WHO’s published seasonal
data on the results of HAI testing and data (sequences
+ accompanying information) from the GISAID (Global
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Initiative on Sharing All Influenza Data) platform. The
computer program Influenza IDE [27] also provides an
additional module Influenza DP, which is a universal
database processor (GISAID, NCBI, etc.).

To study patterns in the cross-immunity model, multiple
regression analysis (linear regression) was used using
the least squares method (LSM) and the non-negative
LSM method [28] to estimate the regression parameters,
represented by formula (1):

Modified_titre =c0 +cl X Asl +¢c2 x As2 +¢3 x
As3 +c4 x As4 +c5 x As5 +c6 x As6, (1)

where the modified HAI titers are represented as the
function value, as arguments Asl, As2, As3, As3, As4,
AsS, As6 are the values of the degree of homology of
antigenic sites (As) A, B, C, D, E, F, respectively, and
c0, cl, c2, c3, c4, c5, c6 — parameters (coefficients) of
the model.

For regression arguments, we relied on our own
method for determining antigenic sites. The term
“antigenic site” was introduced by Gerhard and
Webster in 1978 to describe specific monoclonal
antibodies. Antibodies that competed with each other
were considered to bind the same antigenic site. Each
antigenic site may contain one or more epitopes —
different sets of amino acids on the antigen that come
into contact with the amino acids of the antibodies.
Competition between antibodies that bind the same
antigenic site suggests that the epitopes at a given
site physically overlap, but may be different, and one
antibody molecule shields the entire antigenic site.

Also, to account for differences between strains by
antigenic sites, we introduced the concept of homology
degree and defined it for two randomly selected strains
as a decreasing function of the Hamming distance, taking
values from 1 to 0. The justification and selection of
the functions used are described in detail in the section
“Results”. The Stats package version 4.0.3 of the R
programming language was used to train the regression
model. The Pandas package version 1.4.2 of the Python
programming language was used for data preprocessing.
The stability of the predictive ability of the cross-
immunity model was analyzed on retrospective data.
As a measure of the adequacy of the model, we used the
coefficient of determination R, [29], and as a measure of
the accuracy of the forecast — the index of reproducibility
of titles for one (+ 1) and (or) two (£2) dilutions. We
relied on numerous studies in which, when comparing
the results of HAI assay for each sample within one
laboratory or between several, the titers were considered
equivalent if they differed by no more than one dilution
(i.e. by 2 times) [30-32].

Building an Influenza DB Dataset
to Study a Cross-Immunity Model

Preparation of experimental HAI data

WHO reports on influenza have been published every
season since 2005 and are in the public domain [33].
The presented antibody titers in HAI reveal the antigenic
properties of reference and test strains based on the cross-
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reactivity of ferret antibodies against reference strains
that inhibit the agglutination of guinea pig erythrocytes
by the tested influenza viruses. Due to the fact that WHO
in 2008-2009 found a noticeable effect of neuraminidase
and various sources of erythrocytes (turkey, human, guinea
pig) on the results of HAI assay, in further studies we
used only HAI assay tables from 2009 to 2022 performed
on guinea pig erythrocytes with the addition of 20nM
Oseltamivir, which is used to exclude the influence of
neuraminidase. Despite the proposed international coding
of viruses, researchers from all over the world encounter
inaccurate annotations when depositing sequences in
public databases [34]. Therefore, a separate task in our
work was the procedure for processing and preparing
published HAI assay tables for further use. Also, as a
result of the preparation, each sequence was assigned a
unique identifier.

Modified HAI titers act as a measure of cross-immunity
in our model. To do this, the values of the published HAI
titers are converted to the logarithm to the base 2. Next,
the data is averaged according to the algorithm: subsets
are combined in accordance with similar pairs of strain
identifiers (reference and test); in each obtained subset,
the arithmetic mean of the modified titers is calculated for
the same pairs of strain identifiers.

Itshould be noted that the cultivation (passage) of viruses
performed in chicken embryos may cause characteristic
adaptive substitutions that change the receptor specificity
of viruses and the nature of glycosylation [6, 35] and, as
a result, affect cross-reactivity in HAI data. Therefore, as
a result of the analysis of the primary data, we decided
to single out several subsets in the initial HAI data array:

— with passage history in chick embryos (Egg-
Egg 4226);

—with passage history in cell culture (Cell-Cell 28 621);

— with mixed passage history (Egg s-Cell t 16 463):
reference viruses (to obtain control antisera) cultured in
chick embryos in combination with test viruses grown in
cell culture;

— with mixed passage history (Cell s-Egg t 5032):
reference viruses (to obtain control antisera) grown in cell
culture in combination with test viruses cultured in chick
embryos.

Our solution was based on numerous comparative
studies of antigenic mutations of the H3N2 influenza virus
during cultivation in chicken embryos and cell passages
[36-38]. Considering that the amount of data with a
passage history of Cell-Cell and Egg s-Cell t is several
times larger than the dimension of subsets with passage
histories of Egg-Egg and Cell s-Egg t, we performed
regression analysis on the data of the first two subsets.

Preparing data from the GISAID platform

The GISAID international platform was launched
in 2008 and has since offered a reliable mechanism for
the exchange of all genetic and influenza-related data for
researchers, scientists and healthcare professionals [39].
As in the case of HAI data, when depositing sequences
(when manually entering data, etc.), the format of the
downloaded data is often distorted and misclassified.
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This, in turn, makes it difficult to analyze and process
the available information to improve approaches (meth-
ods) to the selection of vaccine strains. Therefore, for
further research using the computer program Influenza
IDE and the universal processor Influenza DP built into
it, we carried out a thorough cleaning and reconciliation
of the available data. After the completion of the da-
ta verification process, the amino acid sequences were
aligned to the corresponding reference sequence: H,N,:
A/Aichi/2/1968, 566 AA, including the signal peptide,
using the original fast lexical algorithm (maximum ami-
no acid match between the reference sequence and the
sample with minimization of the number of positions de-
letions and insertions) or the Smith—Waterman method
[40]. Samples with differences of more than 20% from
the reference were discarded. Brief statistical character-
istics of the data are presented in Table 1.

Results

Determination of antigenic sites of HN, influenza virus
hemagglutinin

The combination of amino acid sequences into antigenic
sites was carried out according to our own method
with the inclusion of an additional antigenic site F. To
determine which antigenic site of the influenza virus a
particular position belongs to, we primarily focused on
experimental studies [24]. Subsequently, we expanded
the number of positions in antigenic sites by examining
the variability of each hemagglutinin position starting
from 1968. In the array of sequences obtained at the first
stage, the occurrence of each amino acid in each position
was counted. In parallel, an analysis was carried out for
the ability of one or another amino acid of hemagglutinin
to interact with antibodies, determining the immersion or,
conversely, the exposure of amino acids on the surface of
hemagglutinin. During the work, the GETAREA software
[41] wasused, the input of which was the tertiary structures
of hemagglutinin molecules from the PDB (Protein Data
Bank) database [42]. As a result, based on the variability
of positions, their exposure in the tertiary structure of
the protein on the surface, and also taking into account
their maximum proximity to existing antigenic sites,
variable exposed positions were determined, which were
assigned to existing antigenic sites. Moreover, in addition
to the well-known antigenic sites A, B, C, D, and E, we
identified another antigenic site, respectively, named F.
This antigenic site consists of many similar epitopes in the
stem part of the hemagglutinin molecule. The database of
tertiary structures contains more than 20 hemagglutinin
complexes with monoclonal antibodies to this site. This
site is described in detail in a study conducted by D.N.
Shcherbinin et al. [43].

Thus, 6 antigenic sites were identified for hemagglutinin
subtype H3. Below is a list of amino acid positions that
make up these antigenic sites, a total of 109 positions
(Table 2). Numbering is given by mature hemagglutinin
H, [44]. It should be noted that the antigenic site F,
unlike sites A-E, is located mainly in the HA  subunit of
hemagglutinin.
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The information obtained was uploaded to the Influen-
za DB database and served as a template for combining
the existing array with aligned amino acid sequences into
antigenic sites. Further, the array with antigenic sequenc-
es was expanded by adding information about the content
of the number of amino acid substitutions between any
two strains in each of the 6 antigenic sites. As a result
of the above actions, we obtained for each of the 6 anti-
genic sites for randomly selected or separate (each) pair
of strains both the value of HAI titers and the number
of amino acid substitutions (Hamming distance). At the
same time, substitutions in antigenic sites, regardless of
the type and specific position, are accepted to be equiv-
alent. In our model, sequences that do not have substitu-
tions in antigenic sites, but have changes in other posi-
tions, were considered antigenically identical.

Development of a mathematical model of cross-
immunity of the influenza virus

Analysis and selection of a function to assess the degree
of homology

The subsets with the largest number of observations
were selected for regression analysis: Cell-Cell 28,621
and Egg s-Cell t 16,463. Also, instead of a simple
Hamming distance, we decided to use a function from
it, thereby introducing the concept of the degree of
homology between two arbitrary antigenic sequences,
indicating how close the antigenic sites of two different
strains are to each other in terms of antigenic properties,
and taking the value of this function. It was necessary to
choose a function that could meet the requirements and
would not contradict biological processes: in a situation
of complete (absolute) homology of two strains (in the
absence of substitutions in antigenic sites), the function
takes the value 1, and in the absence of homology
(changes were noted in each amino acid position included
in the antigenic site) the value of the function must be
equal to 0 (or close to 0). Obviously, the function should
decrease with increasing Hamming distance.

In addition, as shown in [45], the function that depends
on the Hamming distance and describes the cross-
reactivity of antigens is concave. Based on this, we
introduced an additional restriction for the function we
are considering, namely, that it is concave or at least not
convex, i.e. each subsequent substitution contributes no
more to the decrease in homology than the previous one.

According to the results of studies by colleagues
[16, 45], which showed that when the number of amino
acid substitutions in the antigenic site is equal to or
greater than 7, cross-reactivity of recognizing antibodies
between strains is practically not observed, we introduced
an additional requirement for the desired function:
for 7 substitutions, the value function should take such
a small value that it can be neglected. We also used the
function 1 — x / 8 as the top-limiting function under
consideration (for the values x = {1; 7}), and we took
the value 1 — 7/ 8 = 0.125 as the significance threshold
for 7 substitutions.

Taking into account the specified requirements, the fol-
lowing functions were considered (Figure):
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Table 1. Data statistical characteristic
Taoauna 1. CtaTHcTHYeCKAs] XAaPAKTEPUCTHKA TAHHBIX

B MOMOLLb BUPYCONIOTY

Value
Parameter 3HaueHne
Ilokazarens
Cell-Cell Egg s-Cell t
Total number of observations 28 621 16 463
Oo1ee KOIM4ecTBO HaOMIONCHUH
Total number of pairs of strains 21394 12 444
OO1iee KOIMYECTBO Hap ITAMMOB
Number of observations in the reporting period 2009 21 35
KonnvectBo HaOIrOICHHI B OTYETHOM MEPHOJIE 2010 46 94
2011 132 461
2012 2142 1761
2013 1738 2447
2014 2891 2201
2015 1907 1520
2016 1209 1003
2017 1948 1279
2018 659 164
2019 2236 950
2020 2496 1064
2021 902 281
2022 10294 3203
Titer value, Me [Q,; Q,] 160 [40; 320] 160 [40; 320]
3Ha4yeHue THTpa
Distribution by titer values 20 3404 (11,9%) 1858 (11,3%)
Pacripeniesienue 1o 3HauSHUsIM TUTpPa 40 4154 (14,5%) 2514 (15,3%)
80 4232 (14,8%) 3852 (23,4%)
160 6328 (22,1%) 3794 (23%)
320 6170 (21,6%) 2446 (14,9%)
640 3491 (12,2%) 1410 (8,6%)
1280 772 (2,7%) 511 (3,1%)
2560 60 (0,2%) 75 (0,5%)
5120 10 (< 0,1%) 3(<0,1%)
Hamming distance across antigenic sites A 2 [0; 4] 2 [0; 3]
Jlucrannus XoMMHUHTA 110 aHTUTEHHBIM CaiiTam B 2[1: 4] 3[2: 4]
C 1 [0; 2] 1[0;2]
D 1[0;1] 1[1;2]
E 1[0;2] 1[0; 1]
F 1[0;2] 1[0;2]

e 1-x/8;

* exp(—a X x), where a = 1/3; 1/2; 1;

e 1/(axx+1),wherea=1;2;3.

The values of HAI titers indicated in the original WHO
tables as < (<40) in our model were replaced by a value
of 20. We take a fixed value of the smallest value of the
modified titer as the c0 coefficient, i.e. log2(20) = 4.322.

The left part of Table 3 presents the results for a subset
with a passage history on cell culture (Cell-Cell); in the

right part of the table — with a mixed passage history
(Egg s-Cell t).

Consideration of the selected functions was carried out
by cross-validation: the entire amount of data was ran-
domly divided 5 times in the ratio of 80% to 20%, where
the first part was taken as a training sample, and the sec-
ond — for a test one. The results were evaluated by the
highest average value of the adjusted R* obtained for the
test samples. We also ranked the results for all functions.
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Table 2. Amino acid positions at antigenic sites
Tabiauma 2. AMUHOKHCJIOTHBIE MO3MIIMN B AaHTHT€eHHBIX caiiTax

Site Amino acid position numbers
Caiit Homepa aMMHOKUCIIOTHBIX TO3ULIMIT
A 121, 122, 124, 126, 131, 133, 135, 137, 138, 140, 142, 143, 144, 145, 146
B 128, 155, 156, 157, 158, 159, 160, 163, 186, 188, 189, 190, 192, 193, 194, 196, 197, 198, 199
C 45,47, 48, 49, 50, 53, 54, 271, 273, 275, 276, 278, 280, 304, 311, 312
D 171,172, 173, 201, 202, 207, 208, 212, 213, 214, 217, 219, 220, 221, 222, 223, 225, 226, 227, 229, 230, 242, 244, 246, 248
E 57,58, 62, 63,75, 78, 82, 83, 88, 92, 94, 96, 260, 261, 262
F 25,31, 33,326, 347, 361, 375, 384, 386, 450, 452, 453, 476, 479, 484, 487, 489, 501, 505
1-x/8 exp(x/3) = exp(-x/2) exp(-x)
1/(x+1) —1/(2x+1) —1/(3x+1)
1,000
0,900
0,800
= 0,700
S %
I o 0,600
I35
s € 0,500
58
g ~ 0,400
S ©
" g 0,300
I
g & 0,200
o B
E 0,100
0,000

3 4 5
AnctaHuma XammuHra

Hamming distance

Figure. Functions for evaluating the degree of homology.
Pucynoxk. OyHKIMY VTSI OLICHKH CTETICHH TOMOJIIOTHIHOCTH.

When comparing the results between subsets of Cell-Cell
and Egg s-Cell t, almost complete correspondence of
ranks (Spearman’s rank correlation coefficient p = 0.96)
of functions was observed in relation to subsets. Mean-
while, when comparing the values of the coefficients of
determination for two subsets, the corresponding highest
values were noted for the Cell-Cell subset (by 1.6 times),
which confirms the expediency of separating the avail-
able data by passages, and also confirms that passages on
chicken embryos contain characteristic adaptive substi-
tutions, changing the receptor specificity of viruses and
the nature of glycosylation [6, 35] and, as a result, affect
cross-reactivity in HAI assay. Therefore, we carried out
further calculations on the Cell-Cell subset. As a function
describing the degree of homology, exp (—x / 3) was cho-
sen, which showed the best result for the Cell-Cell subset
and the best result for the Egg s-Cell t subset.

The results of regression analysis with the Cell-Cell
subset (21,580 observations after averaging over pairs of
strains) using the selected function with the requirement
that the coefficients be non-negative are presented in
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Table. 4. In the first column of the table, in addition to the
corrected R? already mentioned above, the designations
of the corresponding antigenic sites are presented, then
in the Estimate column the values of the desired C1-6 re-
gression coefficients are given, in the third column, Stan-
dard error, the standard deviations of these coefficients
are listed. The line Standard deviation represents the stan-
dard deviation of the dependent variable (modified titers).
The contribution of each antigenic site can be judged by
the value of its coefficient. The greater the value of the
coefficient at a certain antigenic site, the greater its con-
tribution to cross-immunity. After determining the coeffi-
cients of the regression model, the statistical hypothesis is
tested about the equality to zero of the true values of the
coefficients according to Student’s criterion with a signif-
icance level of 0.05. The results of the test are presented
in the fifth column, Pr(> [t|) p-value, the probability that
the t-statistic is greater than the t-value modulus (ratio of
coefficient values to their standard deviation). If this val-
ue is less than the confidence level of 0.05, the hypothesis
is rejected and the parameter is considered significant. In
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Table 3. R? values by passage histories for the considered functions

B MOMOLLb BUPYCONIOTY

Ta6anua 3. 3navenust R? o nmaccaxHbIM HCTOPHSIM [UISI PACCMATPHBAEMBIX (YHKIHI

Cell-Cell (21 580 pairs of strains 2009-2022) Egg s-Cell_t (12 444 pairs of strains 2009-2022)

Function (21 580 map mrrammos 2009-2022) (12 444 naps! mrammos 2009-2022)

Pyn 1_20% | 2.20% | 3.20% | 420% | 520% | cp._20% | 1 20% | 2.20% | 3.20% | 4 20% | 5 20% | cp._20%
1-x/8 0,457 0,483 0,471 0,486 0,490 0,477 0,273 0,252 0,277 0,282 0,255 0,268
exp(—x/3) 0,494 0,519 0,504 0,520 0,530 0,513 0,326 0,293 0,317 0,336 0,295 0,313
exp(—x/2) 0,476 0,498 0,478 0,494 0,509 0,491 0,331 0,294 0,313 0,328 0,293 0,312
exp(—x) 0,366 0,380 0,346 0,363 0,393 0,370 0,253 0,205 0,200 0,242 0,207 0,222
1/x+1) 0,441 0,461 0,438 0,453 0,471 0,453 0,312 0,272 0,283 0,315 0,275 0,292
1/2x+1) 0,376 0,391 0,358 0,375 0,399 0,380 0,268 0,220 0,216 0,258 0,224 0,237
1/3x+1) 0,328 0,340 0,301 0,320 0,348 0,327 0,213 0,162 0,149 0,196 0,168 0,178

Table 4. Regression results for the exp(—x / 3) function
Ta6nuua 4. Pesyabtarsl perpeccuu 1st GyHKuuu exp(—x/ 3)

Antigenic sites

Cell-Cell_2009-2022 (21 580 pairs of strains)

(21 580 map mTamMmmoB)

AHTUTEHHBIC CaNTBI

3?2{?1??& CTa;;z%iirfﬂeé$;6Ka P-r(> |t]) p-value
A 1,233 0,034 <0,001
B 2,506 0,034 <0,001
C 0,000
D 0,083 0,027 0,002
E 0,622 0,039 <0,001
F 0,000
CR? 0,514
Standard deviation 1161

CraHIapTHOE OTKIIOHEHHE

our case, all antigenic sites, except for C and F, were rec-
ognized as significant. The coefficients at the antigenic
site C and F took the value 0, and this is equivalent to
insignificance.

Analysis of the stability of the predictive ability
of the cross-immunity model based on retrospective data

For a more detailed understanding of the influence of
the time factor and the number of observations involved
in tuning the model on the accuracy of the forecast, the
next step is to divide the subset of Cell-Cell 2009-2022
into different time periods (1-, 2-, 3-,4-, 5-year) adjustable
periods with a forecast for each subsequent year. The
full results of the regression analysis are presented in
Appendix.

Based on presented in table 5.1 and 5.2 of the results,
we can state that the adjusted R2, which takes a value not
higher than 0.3 in adjustable periods, begins to increase
significantly from 2019, changing from 0.32 to 0.64
(the more years in the adjustable interval, the lower the
value). 2021 is out of this trend due to low incidence
and little data due to the COVID-19 pandemic. The
dynamics of the value of the adjusted R? is also directly

reflected in the forecast periods, taking values no higher
than 0.4 (including negative ones) and further increasing
from 2020 (from 0.47 to 0.6).

We also evaluated the predictive ability of the
results presented in Table. 5.1 and 5.2, according
to the reproducibility of titers for one (+1) and two
(£2) dilutions. When comparing the calculated titles
with those published in the forecast periods, with
the exception of 2016 and 2021 (a small number of
observations — 841 and 478, respectively) and 2015 (when
the recommended vaccine strains failed to provide
effective protection), the reproducibility of titers per (x1)
dilution was demonstrated in more than 50% of cases, and
at times reached 67% of cases. As for the reproducibility
of'titers at two (£2) dilutions, approximately 90% of cases
and above are consistently observed over all time periods.

The results of regression analysis over adjustable
(1-5year time intervals) demonstrated the significance
of the contribution of each antigenic site to the immune
response. The coefficients at antigenic sites A and B
have high values in all forecast periods. This can be seen
especially clearly on 3-5-year customizable periods.
Antigenic site C actually takes on null values only with
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Table 5.1. R*
Ta6auna 5.1. R?
Year 1 year 2 year 3 year 4 year 5 year
T'on rozn rozaa roaa roza JeT
2014 0,135 0,099 0,099 0,101 0,101
2015 0,223 —-0,204 0,354 0,355 0,348
2016 0,043 0,225 0,278 -0,540 0,546
2017 0,005 0,198 0,158 0,083 0,071
2018 0,092 0,001 0,100 0,071 0,052
2019 0,124 0,244 0,405 0,318 0,277
2020 0,596 0,592 0,577 0,561 0,543
2021 0,044 0,095 0,125 0,135 0,128
2022 0,600 0,472 0,497 0,540 0,561
Table 5.2. £1 dilution
Tadauua 5.2. £1 pa3Benenue
Year 1 year 2 year 3 year 4 year 5 year
Ton o/ roaa roaa roaa JIeT
2014 67,84 67,94 67,94 67,24 67,24
2015 46,46 46,69 45,67 45,59 45,75
2016 40,43 38,41 36,50 34,48 34,36
2017 56,40 59,40 63,40 55,83 59,54
2018 65,27 59,62 62,97 60,88 61,09
2019 45,44 50,94 59,41 57,20 57,57
2020 57,70 57,03 58,33 57,32 56,79
2021 46,03 48,12 50,63 53,35 51,88
2022 55,27 50,18 54,16 55,66 60,49

Table 6. Regression results for 2022 data
Tadauua 6. PesynbraThl perpeccuu no JaHubiv 2022 r.

Customizable period

February 2022 report data

2022 . JlanHbIe (heBpaNIbCKOro
HactpauBaemsbie neproist oraera 2022 -
Number of observations 8183 1994
KonyecTBo HaOIONCHUIH
Adjusted R? 0,728 0,625
CkoppeKTHpoBaHHbIH R2
Standard deviation 0,874 0,966

CTaHI[apTHOC OTKJIOHCHHUEC

Forecast periods
IIporuosuslie nepuos!

September 2022 report data
JlaHHBIE CEHTSIOPBCKOTO
oryera 2022 .

Number of observations
KonuuecTBo HaOMOACHUI

Adjusted R?
CKoppeKTHpOBaHHbIH R2

Standard deviation
CraniapTHOE OTKJIOHCHHUE

+1 dilution / pa3BeneHue

+2 dilution / pa3BeneHus

6675

0,734

0,933

69,33%
98,73%
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rare exceptions. Almost at all time intervals, a stable
contribution, commensurate with the contribution of
A and B, also demonstrates the antigenic site D, but
only until 2018, followed by a sharp zeroing. Moderate
compared to antigenic sites A and B, but at the same
time stable significance is demonstrated by the antigenic
site E with a noticeable increase by 2018-2021. The
contribution of the antigenic site F varies diametrically
depending on time intervals, from stable significant to
zero. It should be noted that, in general, the results of the
regression do not reveal a significant dependence on the
number of years included in the adjusted period. At the
same time, forecast results are significantly worse in those
seasons when there is little data in the forecast period.
In addition, our correlation analysis showed that there
is no correlation between the values of the coefficients
at antigenic sites and the number of substitutions in
positions. Taking into account the fact that the number
of observations only for 2022 is more than 1/3 of the
total volume of observations for 2009-2022, it was
decided to conduct separate calculations for observations
in 2022. Figure 6 shows the results of calculating the
predictive ability of the developed cross-immunity model
based on the published data of the RTGA 2022 (spring
and autumn seasons).

Discussion

The analysis of the scientific literature demonstrated
that in most studies the assessment of cross-immunity
was carried out on a limited data set, including only
reference strains, which reduces the objectivity of studies
and makes it difficult to verify the forecast. Carrying out
calculations based on the entire available array of HAI
data published by WHO made it possible to bypass these
limitations. With the help of the built-in additional module
Influenza DP, which is a universal database processor
(GISAID, NCBI, etc.), we have developed an algorithm
that allows us to generate databases in real time according
to the tasks for further analysis and calculations. To
study the patterns in the cross—immunity model, subsets
with the largest number of observations — Cell-Cell and
Egg s-Cell t — were considered. We also introduced the
concept of the degree of homology between two arbitrary
strains, which takes the value of a function depending on
the Hamming distance.

When considering functions for choosing a variant
describing the degree of homology, a significant
dependence of the wvalues of the coefficient of
determination on the type of function was noted. While
all functions were subjected to the same necessary
conditions corresponding to biological processes, the
resulting adjusted R? values fluctuated quite significantly
and took values from 0.327 to 0.513 for the Cell-Cell
subset and 0.178 to 0.313 for the Egg s-Cell t subset,
respectively. Such a significant difference between the
upper and lower limits of the indicator indicates that the
use of a simple Hamming distance [16, 18] as a measure
of homology can impose significant restrictions on the
models used. The ranking of the results for all functions
was also carried out. When comparing the results with
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the Cell-Cell and Egg_s-Cell _t subsets, almost complete
correspondence of the function ranks by the value of the
adjusted R? in relation to the subsets was observed. The
results obtained may indicate a certain correspondence to
the biological mechanisms of our approach to the choice
of function.

Comparison of the adjusted R? values on the Cell-Cell
and Egg s-Cell _t subsets (0.523 and 0.313, respectively)
demonstrates the validity of our decision to split the
original dataset according to passage history. The
difference in the adjusted R? also suggests that viruses
cultured in chick embryos introduce a large error in the
results of HAI assay.

In our calculations, we relied on the results of our own
studies of combining amino acid positions into antigenic
sites, described an additional F site, thereby expanding
the number of antigenic sites to 6. The results of
regression analysis on all Cell-Cell subsets showed that
antigenic sites A and B made the greatest contribution
to the immune response. They are moderately overtaken
in stable values by the antigenic site E with a noticeable
increase in 2018-2021. Antigenic site C practically does
not contribute to the immune response in all considered
intervals. Antigenic site D, which largely confidently
demonstrates its significance at the beginning of the
forecast periods, begins to lose ground in 2018-2021. The
antigenic site F with its modestly unstable contribution to
cross immunity turned out to be quite sensitive to time
intervals.

In addition, we analyzed the stability of the predictive
ability of our model for different time intervals
(from 2009 to 2022). After dividing the Cell-Cell subset
into 1 to 5 year time intervals, it was noted that the
value of the adjusted R? in adjustable periods increases
starting from 2019 reaching around 0.5 and above, except
for 2021, which has very few observations (478) due to
the COVID-19 pandemic. A similar picture is observed
in the forecast periods. The pronounced high value of
the adjusted R? for later data may be due to an increase
in ongoing research (HAI assay) on cell culture and an
improvement in their quality.

When comparing calculated values with published
titers, reproducibility results per (£1) dilution are
fairly stable across forecast years, with values greater
than 50% (averaging around 60%), except for 2015, 2016,
and 2021. At the same time, we see the main reason for the
poorer results in a small amount of data for the forecast
periods.

As shown in the results, the unprecedented number of
observations for 2022 provided us with the opportunity to
tune the model to the data at the beginning 0f 2022 (adjusted
R? = 0.728), and check the results of the forecast for
the autumn season. The prediction results (adjusted
R? = 0.734) demonstrated titer reproducibility per (1)
dilution in 69.33% of cases and turned out to be significantly
better than all previously considered periods, which can
already be considered sufficient for practical application.
The explanation for this result can be both the quality of the
data and the forecast period limited by the season. In the
work of T. Bedford et al. [15], who performed a regression

B MOMOLLb BUPYCONIOTY

analysis on the entire H,N, HAI data set, obtained
R?=0.372, which is lower than our adjusted R* = 0.523 on
the entire Cell-Cell subset. The results of colleagues could
be affected by the lack of separation of data by passage
history and time intervals. Also, the results may have been
influenced by the use of a simple Hamming distance. It
is important to recognize that, despite all the efforts to
standardize the conduct of RTGA [32] and regardless of
the chosen approach for studying the dependence of HAI
titers on amino acid substitutions, the initially inherent
high error of the HAI method (17%) [46] remains a factor
that significantly affects the results.

Conclusions

Based on an epidemiological model and with a well-
tuned cross-immunity model, we have developed a com-
puter program that provides the ability to predict the most
common strains, taking into account the influence of the
immune landscape and select a vaccine strain for the up-
coming season.

The ability to carry out calculations based on the entire
available array of WHO-published seasonal HAI data, the
observed improvement in results over recent years (start-
ing in 2019), as well as a large volume of observations and
the results of the forecast for 2022 (adjusted R* = 0.734;
reproducibility of titers per one (+ 1) dilution in 69.33%
of cases) allow to assert that the proposed method can
serve as a good tool for future forecasts with further study
to confirm its stability.

In turn, the advantage of using the Influenza IDE
computer program with a constantly updated database of
various types and subtypes of the influenza virus in the
future will allow reproducing the results obtained on other
variants and subtypes of the influenza virus and thereby
testing the developed model and expanding the spectrum
of recommended vaccine strains. The experience and
skills gained in determining antigenic sites in the future
will make it possible to combine amino acid positions
into antigenic sites according to several scenarios and
making calculations already taking them into account.
Further development of the cross-immunity model can
be achieved by unilateral normalization of the titers of
the entire array of test strains against reference strains,
which will reduce the error associated with the individual
characteristics of the experimental animals used. Also,
the improvement of the model can be achieved by taking
into account processes such as glycosylation.
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