С. В. Грибенча¹, М. А. Лосич¹, Л. Ф. Грибенча¹, И. В. Непоклонова²

Новый принцип селекции вакцинного вируса на основе количественного уровня экспрессии G-белка — главного иммуногена вируса бешенства

¹ФГБУ НИИ вирусологии им. Д. И. Ивановского Минздравсоцразвития России; ²АНО «НИИ ДПБ» Институт болезней человека и животных, Москва

Описан новый принцип селекции вакцинного вируса бешенства штамм ERA-CB20M на основе количественного уровня экспрессии гликопротеина – главного иммуногена вируса бешенства. Установлена зависимость уровня количественной экспрессии гликопротеина от уровня аттенуации вакцинного вируса. Реализация нового принципа селекции вакцинного вируса позволит получить более безопасную и более иммуногенную вакцину против бешенства.

Ключевые слова: вакцинный вирус бешенства, селекция, экспрессия G-белка, патогенность, титр вируса, уровень аттенуации

A new principle in the selection of vaccinal rabies virus based on quantitation of the expression of G protein, a major immunogen of rabies virus

S. V. Gribencha¹, M. A. Losich¹, L. F. Gribencha¹, I. V. Nepoklonova²

¹D. I. Ivanovsky Research Institute of Virology, Ministry of Health and Social Development of Russia, Moscow;
²Research Institute of Human and Animal Diseases, Moskow

The paper describes a new principle of the selection of the rabies virus vaccine strain ERA-CB20M based on quantitation of the expression of glycoprotein, a major immunogen of rabies virus. There is a correlation between the level of glycoprotein expression and that of vaccine virus attenuation. The application of the new principle for vaccine virus selection will permit a safer and more immunogenic rabies vaccine to be prepared.

Key words: vaccinal rabies virus, selection, G protein expression, pathogenicity, virus titer

Вирус бешенства занимает особое положение в инфекционной патологии. Он поражает ЦНС всех млекопитающих. После проникновения вируса бешенства в ЦНС шансы на выживание равны нулю. Поэтому современные стратегия и тактика борьбы с бешенством заключаются в предупреждении инфицирования человека и животных, а если вирус проник в организм, — в предупреждении его попадания в ЦНС и развития бешенства. Для решения последней задачи есть только два средства — антирабическая вакцина и антирабический иммуноглобулин.

Эффективность антирабической вакцины определяется триадой – вакцинным вирусом, технологией производства, методом и схемой иммунизации. Любой компонент триады существенен. Однако очевидно, что ведущим среди них является штамм вакцинного вируса.

Одним из наиболее детально изученных, перспективных и широко применяемых в ветеринарной практике вакцинных вирусов бешенства является штамм ERA и другие производные фиксированного вируса бешенства штамма SAD [1, 4, 6].

Штамм ERA, адаптированный к линии клеток ВНК-21, был любезно предоставлен нам д-ром Т. Wiktor из Института Вистар (США). Однако при сравнительном исследовании нейровирулентности штамм ERA оказался более патогенен, чем штаммѕ Внуково-32, Внуково-37 и CVS-11, а титр вируса не превышал 6,5–6,8 lg $\rm LD_{50}/m\pi$ [1].

Ранее нами впервые было показано, что популяция штаммов вируса бешенства гетерогенна по составу

биологических вариантов, а также установлена возможность селекции (выделения) биологических вариантов из популяции штамма вируса [8–10].

Эти данные были подтверждены международной группой исследователей в Центре научных исследований Франции под руководством Anne Flamand [5].

Используя изложенные нами ранее [8–10] принципы селекции биологических вариантов из популяции штаммов уличного вируса бешенства, мы определили задачу наших исследований, которая заключалась в селекции популяции вакцинного вируса, характеризующегося сравнительно более низкой патогенностью и количественно более выраженной экспрессией гликопротеина, с целью получения более безопасной и более иммуногенной вакцины против бешенства.

Материалы и методы

Вирус. Вирус штамм ERA, полученный от д-ра Т. Wiktor из Института Вистар (США) в 1972 г., культивировали в культуре клеток ВНК-21 в среде DMEM с 2% эмбриональной сывороткой телят. Титр вируса определяли в lg LD $_{50}$ /мл при применении методов интрацеребрального (ic) и внутримышечного (im) заражения мышей, а также в культуре клеток ВНК-21 в lg $TCID_{50}$ /мл по стандартной методике.

Животные. Патогенность вируса исследовали в опытах на белых беспородных мышах массой 6–7, 12–13 и 16–18 г, морских свинках массой 270–330 г, белых крысах массой 200–250 г и кроликах шиншилла массой 2–2,5 кг при различных методах заражения (табл. 1, 2).

	M	05	Вирус штамм ERA*		Вирус штамм ERA-CB20М**	
Метод заражения	Масса животных, г	Объем инокулята, мл	титр вируса или доза, mic LD ₅₀	пали/число животных в опыте	титр вируса или доза, mic LD ₅₀	пали/число животных в опыте
D	6–7	0,03	6,53		6,83	
Внутримозговой (іс)	16-18	0,03	6,45		6,5	
	6–7	0,1	3,82		< 3,0	
Внутримышечный	16-18	0,2	1,9		< 1,0	
(im)	12-13	0,2	6000	0/10	6000	0/10
	6–7	0,5	1 051 000	6/10	1 063 000	4/10
		0,5	105 000	2/10	106 000	0/10
Подкожный (sc)	16-18	0,5	1 051 000	2/10	1 063 000	0/10
		0,5	105 000	0/10	105 000	0/10
	12-13	0,5	6000	0/10	6000	0/10

 Π р и м е ч а н и е. * – вирус штамм ERA с титром вируса 7,53 $\lg LD_{50}$ /мл и 400 нг/мл G-белка представляет собой смесь трех популяций (сборов) вируса под номерами 1a, 1б, 1в (см. табл. 3); ** – вирус ERA-CB20M с титром вируса 7,9 $\lg LD_{50}$ /мл и 1900 нг/мл гликопротеина представляет собой смесь трех популяций вируса под номерами 6, 10 и 11 (см. табл. 3). Эти смеси популяций вирусов ERA и ERA-CB20M были использованы для сравнительного изучения их патогенности для мышей, морских свинок, белых крыс и кроликов; mic – мышиная интрацеребральная $\lg LD_{50}$.

Таблица 2 Сравнительное исследование патогенности вирусов штамм ERA и ERA-CB20M в опытах на морских свинках, белых крысах и кроликах

Вид и масса животных	Метод заражения, объем в мл	Доза вируса в micLD ₅₀	Вирус штамм ERA		Вирус штамм ERA-CB20M	
			заболели	пали	заболели	пали
Морские свинки	im 0,5	1 580 000	2/10	1/10	1/10	0/10
270–330 г	sc 0,5	1 580 000	0/5	0/5	0/5	0/5
T.	im 0,5	1 580 000	2/5	1/5	0/5	0/5
Белые крысы 200–250 г	im 0,5	158 000	0/5	0/5	1/5	0/5
200 2301	sc 0,5	1 580 000	1/5	0/5	0/5	0/5
Кролики	im 1,0	3 160 000	0/5	0/5	0/5	0/5
шиншилла	im 1,0	316 000	0/3	0/3	0/3	0/3
2–2,5 кг	sc 1,0	3 160 000	0/3	0/3	0/3	0/3

Селекция популяции вируса штамм ERA-CB20M. Культуру клеток ВНК-21 заражали вирусом ERA в дозах 50, 250, 1250, 6250 и 31 250 LD₅₀. Через 5, 7, 10 и 13 дней делали сборы вируса. Определяли титр вируса в каждой пробе сборов путем внутримозгового заражения мышей массой 6–7 г, а также количество гликопротеина (в нг/мл), иммуноферментным методом, разработанным нами совместно с проф. Л. Б. Эльбертом [3], на основе полученных нами моноклональных антител (1-С5) к гликопротеину вакцинного вируса штамма Внуково-32 [2].

Разработанный нами вариант твердофазного иммуноферментного анализа для количественного определения гликопротеина (в нг/мл) в сборах вирусов предусматривает организацию в 96-луночных пластиковых панелях трехслойного "сандвича", где первый слой представлен моноклональными антителами (МКА 1-С5) к G-белку [2], а следующие два — антигенным тест-материалом и упомянутыми выше МКА, конъюгированными с пероксидазой хрена [3].

Антигенным тест-материалом служили пробы популяций (сборов) вирусов, вирусные и вакцинные полуфабрикаты, а также готовая культуральная антирабическая вакцина. С целью удаления растворимой фракции гликопротеина, не обладающего антигенной активностью, тестируемые образцы обрабатывали ПЭГ-6000. Образовавшийся преципитат осаждали центрифугированием и ресуспендировали в фосфатно-солевом буфере.

Оптическую плотность реакционной смеси в лунках оценивали в приборе Reader ("Labsystems Multiskan", Великобритания) при длине волны 450 нм. Количество G-белка в испытуемых популяциях вируса рассчитывали по кривой зависимости оптической плотности от этой концентрации для стандартного антигенного образца. Полученные результаты представлены в табл. 3.

Определение количества G-белка в пробах сборов вируса рассматривали как основной критерий селекции популяции вируса. Основанием для такого подхода служили работы [7, 13, 14], в которых было установлено наличие корреляции между степенью аттенуации штамма вируса бешенства и

уровнем экспрессии гена гликопротеина. Так, высокопатогенные штаммы вируса бешенства экспрессируют низкий уровень G-белка, низкий уровень МНС второго класса и не индуцируют апоптоз нейронов, тогда как слабовирулентные штаммы вируса наоборот [11]. Далее технология селекции заключалась в отборе из сборов каждого пассажа той популяции вируса, в которой определяли наиболее высокий уровень гликопротеина и титр вируса. Популяции (сборы) вируса, в которых определяли наиболее высокий уровень гликопротеина, затем использовали для последующих пассажей, сборов и титрований.

В результате проведенных пассажей удалось селекционировать популяцию вируса с относительно стабильной высокой экспрессией гликопротеина от 500 до 2400 нг/мл, которая явилась основой нового вакцинного штамма вируса бешенства ERA-CB20M. Выделенный биологический вариант прошел 20 последовательных пассажей в культуре клеток ВНК-21 и получил новое обозначение — вакцинный вирус штамм ERA-CB20M (С — селекция, В — вариант, 20 — 20 последовательных пассажей, М — Москва).

Кроме того, в ходе проведенных пассажей по селекции новой популяции вакцинного вируса ERA-CB20M возникло предположение, что вирус ERA-CB20M менее патогенен, чем исходный вирус штамм ERA. Для решения этого принципиального для вакцинного ви-

руса вопроса важно было сравнительно изучить патогенность этих вирусов для лабораторных животных.

Сравнительное изучение патогенности вирусов ERA и ERA-CB20M. Для сравнительного изучения патогенности вирусов ERA и ERA-CB20M в опытах на мышах, морских свинках, белых крысах и кроликах мы использовали смесь трех популяций (сборов) вируса ERA в равных объемах (1а, 1б, 1в в табл. 3), а также смесь трех популяций (сборов) вируса ERA-CB20M под номерами 6, 10, 11 (см. табл. 3). Смесь популяций вируса штамм ERA содержала 400 нг/мл G-белка, а смесь популяций вируса штамм ERA-CB20M — 1900 нг/мл гликопротеина.

Результаты

Сравнительное исследование патогенности вирусов ERA и ERA-CB20M в опытах на беспородных белых мышах, зараженных в мозг, мышцу и подкожно

Из табл. 1 видно, что существенная разница между патогенностью вирусов ERA и ERA-CB20M при применении метода самого высокопатогенного внутримозгового заражения отсутствует как для молодых (6,53 и 6,83 lg $\rm LD_{50}$), так и для взрослых мышей (6,45 и 6,5 lg $\rm LD_{50}$ соответственно).

Однако при методе внутримышечного заражения (см. табл. 1) выявляется определенная повторяемая разница в патогенности между вирусами. Более высокая патогенность штамма ERA по сравнению с вирусом ERA-CB20M установлена как для молодых (3,82 и < 3,0 lg LD $_{50}$ /мл), так и для взрослых животных (1,9 и < 1,0 lg LD $_{50}$ /мл соответственно).

Четкие различия в патогенности вирусов для мышей выявлены и при подкожном методе их введения. Так, при подкожном введении вируса ERA в дозе 1 051 000 micLD $_{50}$ из 10 молодых мышей заболели 6, а из 10 молодых мышей, инфицированных вирусом

Таблица 3 Количество G-белка -- основного иммуногена вакцинного вируса бешенства не зависит от титра вируса в популяции вакцинного вируса штамм ERA-CB20M

Номера групп популяций вирусов в зависимости от титра вируса	Условные номера популяции вирусов	Штамм вируса	День сбора вирусов	Титр вируса, lg LD ₅₀ /мл	Количество G-белка, нг/мл
I	1a	ERA	5-й	6,8	450
	1б	ERA	3-й	7,3	520
	1в	ERA	7-й	7,5	200
	2	ERA-CB20M	3-й	6,8	525
	3	ERA-CB20M	7-й	6,9	1400
	4	ERA-CB20M	3-й	7,5	844
II	5	ERA-CB20M	7-й	7,9	1600
	6	ERA-CB20M	5-й	7,9	1900
	7	ERA-CB20M	3-й	7,82	450
	8	ERA-CB20M	7-й	7,83	220
III	9	ERA-CB20M	5-й	8,0	1250
	10	ERA-CB20M	3-й	8,0	2400
	11	ERA-CB20M	8-й	8,0	1600
	12	ERA-CB20M	5-й	8,2	2780
	13	ERA-CB20M	5-й	8,0	2400
	14	ERA-CB20M	5-й	8,04	1250
	15	ERA-CB20M	5-й	8,3	1000
	16	ERA-CB20M	5-й	8,33	2400
	17	ERA-CB20M	5-й	8,32	3100

ERA-CB20M, — 4 животных. При заражающей дозе $105\ 000\ LD_{50}$ вируса ERA заболели 2 мыши, и ни одна мышь не заболела при инфицировании вирусом ERA-CB20M. Для взрослых мышей при дозе заражения $1\ 051\ 000\ \text{micLD}_{50}$ пали 2 из $10\ \text{мышей}$, инфицированных вирусом ERA, и ни одна мышь при заражении вирусом ERA-CB20M. Оба вируса оказались апатогенными при заражающей дозе $1\ 051\ 000\ \text{micLD}_{50}$, а также при дозе $6000\ \text{micLD}_{50}$ для мышей массой $12-13\ \text{г}$ как при im-, так и при sc-методах заражения.

Сравнительное исследование патогенности вакцинных вирусов ERA и ERA-CB20M в опытах на морских свинках, белых крысах и кроликах, зараженных внутримышечно и подкожно

Из табл. 2 видно, что из 2 заболевших морских свинок, зараженных внутримышечно вирусом ERA в дозе 1 580 000 micLD $_{50}$, одно животное пало, а другое выздоровело с выраженным параличом левой задней лапки (место инфицирования). Из 10 морских свинок, зараженных вирусом ERA-CB20M в дозе 1 580 000 micLD $_{50}$, заболело только одно животное, которое выздоровело с параличом левой задней лапки. При подкожном методе заражения животных в дозе 1 580 000 micLD $_{50}$ оба вируса оказались апатогенными.

При внутримышечном заражении белых крыс вирусом ERA в дозе 1 580 000 micLD $_{50}$ заболели 2 крысы, из которых 1 выздоровела с остаточным параличом левой задней лапки, и ни одно животное не заболело из группы крыс, зараженных вирусом ERA в дозе 158 000 LD $_{50}$.

Из 2 групп белых крыс, зараженных вирусом ERA-CB20M, заболело только 1 животное, которое выздоровело после инокуляции 158 000 LD $_{50}$ (см. табл. 2). При подкожном заражении белых крыс вирусом ERA в дозе 1 580 000 LD $_{50}$ заболело и выздоровело одно животное, и ни одна крыса не заболела из группы животных, ин-

фицированных вирусом ERA-CB20M. Наконец, оба вируса (ERA и ERA-CB20M) оказались апатогенными при заражении кроликов в мышцу в дозах 3 160 000 или 316 000 micLD₅₀ подкожно в дозе 3 160 000 micLD₅₀.

Количество G-белка — основного иммуногена вакцинного вируса бешенства не зависит от титра вируса в конкретной популяции (сборе) вакцинного вируса ERA-CB20M

Ранее нами [8–10], а затем международной группой исследователей [5] было установлено, что популяция штаммов вируса бешенства гетерогенна по биологическим вариантам, которые определяют разнообразие биологических свойств. Другие исследователи [11, 31, 14] выявили корреляцию между уровнем экспрессии гликопротеина вируса бешенства и степенью патогенности вируса. Поэтому следующей задачей наших исследований было выяснение вопроса: существует ли зависимость количества определяемого G-белка в конкретном сборе (популяции) вируса от его титра.

Для этого в сборах культурального вируса штамм ERA и ERA-CB20M определяли количество G-белка [3] и титр вируса путем внутримозгового заражения молодых мышей массой 6–8 г. Результаты исследований представлены в табл. 3.

Из таблицы видно, что на фоне низкой вариабельности титра вируса наблюдается широкая вариабельность значений количества G-белка в исследуемых сборах вакцинного вируса бешенства штамм ERA и ERA-CB20M. При этом количественный уровень гликопротеина не зависит от титра вируса. Так, в I группе вирусов ERA и ERA-CB20M инфекционные титры колебались от 6,8 до 7,5 lg $\rm LD_{50}/mn$, а количества G-белка — от 200 до 1400 нг/мл.

Во II группе популяции вирусов практически выявлены одни и те же титры вируса 7,82–7,9 5 lg LD $_{50}$ /мл, однако количество G-белка колебалось в широких пределах (220–1900 нг/мл). Наконец, в III группе популяции сборов вируса, в которой титры вируса незначительно варьировали (8,0–8,33 5 lg LD $_{50}$ /мл), наблюдали троекратное колебание количества G-белка (1000–3100 нг/мл).

Количественный уровень G-белка зависит только от штамма вируса. Так, в I группе вирусов титры популяций вируса штамм ERA-CB20M (№ 2, 3, 4) колебались от 6,8 до 7,5 5 lg LD $_{50}$ /мл, а количество G-белка — от 525 до 1400 нг/мл, тогда как в популяциях вируса штамм ERA (№ 1а, 1б, 1в) с такими же титрами вируса (6,8, 7,3 и 7,5 5 lg LD $_{50}$ /мл), как в популяциях штамм ERA-CB20M, количество гликопротеина не превышало 200—520 нг/мл.

Обсуждение

В настоящем исследовании представлен новый принцип селекции популяции вакцинного вируса бешенства штамм ERA-CB20M. Новый принцип основан на селекции популяции (биологического варианта) вируса с наиболее высоким уровнем экспрессии гликопротеина – основного иммуногена вируса бешенства [12]. Полученный в результате селекции вариант вакцинного вируса штамм ERA-CB20M отличается от популяции родительского вируса штамма ERA сравнительно меньшим уровнем патогенности для белых мышей, морских свинок и белых крыс (см. табл. 1, 2) и более высоким уровнем экспрессии G-белка (см. табл. 3).

Важно подчеркнуть, что при сравнительном исследовании патогенности вирусов ERA и ERA-CB20M для лабораторных животных были использованы одинаковые дозы заражения в LD₅₀. Тем не менее патогенность вируса штамм ERA (смесь популяций 1а, 1б, 1в) оказалась более выраженной для лабораторных животных по сравнению с вирусом штамм ERA-CB20M (смесь популяций 6, 10, 11; см. табл. 1 ,2). Уровень экспрессии G-белка вируса штамм ERA-CB20M (популяции 6, 10, 11) был выше (1900, 2400, 1600 нг/мл), чем вируса штамм ERA (450, 520 и 200 нг/мл; см. табл. 3).

При этом важно констатировать, что результаты, представленные в табл. 3, свидетельствуют об отсутствии какой-либо корреляции между титром вируса, днем сбора вируса и количеством гликопротеина в конкретных популяциях вируса штамм ERA-CB20M. Следовательно, уровень экспрессии G-белка, в условиях наших экспериментов не зависит от титра вируса.

Возникает вопрос: с чем связан более высокий уровень экспрессии G-белка вируса штамм ERA-CB20M по сравнению с вирусом штамм ERA. Из технологии приготовления концентрированной антирабической вакцины из штамма Внуково-32 известно, что полуфабрикаты вируса содержали от 100 до 250 нг/мл гликопротеина, и только концентрирование вируса позволяло повышать уровень гликопротеина до > 900 нг/мл — уровень гликопротеина в концентрированной вакцине (личное сообщение проф. Л. Б. Эльберта).

В условиях наших экспериментов концентрирование вируса не проводили. Поэтому единственное объяснение более высокого уровня гликопротеина (1900, 2400,

1600 нг/мл) в популяциях вируса ERA-CB20M (6, 10, 11) по сравнению с вирусом ERA (450, 520 и 200 нг/мл) — это установленное нами наличие корреляционной связи между уровнем патогенности (или апатогенности) для лабораторных животных вирусов ERA и ERA-CB20M и уровнем экспрессии G-белка.

Таким образом, выявленная ранее корреляционная связь между уровнем экспрессии гликопротеина [13, 14] и уровнем патогенности вирусов бешенства подтверждена на модели вакцинного вируса бешенства и использована как критерий селекции для получения менее патогенного, но с более выраженной экспрессией G-белка вакцинного вируса штамм ERA-CB20M.

Установленная вариабельность количества гликопротеина в сборах вакцинного вируса ERA-CB20M позволяет предположить, что популяция вируса остается гетерогенной, но закономерности, определяющие колебания популяции вируса с выраженной экспрессией G-белка. пока неясны.

В заключение необходимо отметить, что включение дополнительного экспресс-метода контроля — определения количественного уровня экспрессии гликопротеина в посевном вирусе, полуфабрикатах, а также в готовой вакцине — позволит существенно сократить цикл производства и создать эффективную технологию с заданными параметрами иммуногенности антирабической вакцины.

ЛИТЕРАТУРА

- 1. *Грибенча Л. Ф., Селимов М. А.* Сравнительное изучение RCT-40 и патогенности признаков культуральных вакцинных штаммов вируса бешенства // Материалы симпозиума по бешенству 24–27 октября 1972 г. Москва. С. 43–46.
- 2. *Грибенча С. В., Василенко О. В., Фуралев В. А.* и др. Получение и характеристика гибридом, продуцирующих моноклональные антитела к структурным белкам вируса бешенства штамм «Внуково-32» // Вопр. вирусол. − 1991. № 4. С. 318–321.
- 3. *Грибенча С. В., Эльберт Л. Б., Алипер Т. И.* и др. Количественное определение гликопротеина основного иммуногена вакцинного вируса бешенства, методом иммуноферментного анализа // Труды Московского международного ветеринарного конгресса. М., 2005.
- 4. Комитет экспертов BO3 по бешенству. Восьмой доклад. Женева, 1992. С. 18.
- 5. *Benmansour A., Brahimi M., Tuffereau C.* et al. Rapid sequence evolution of street rabies glycoprotein is related to the highly heterogeneous nature of the viral population // Virology. 1992. Vol. 187. P. 33–45.
- Blancou J. La vaccination des renards contre la rage // Ann. Med. Vet. 1985. – Vol. 129. – P. 329–337.
- Faber M., Pulmanausahakul M., Hadawadekar S. et al. Over-expression
 of the rabies virus glycoprotein results in enhancement of apoptosis and
 antiviral immune response // J. Virol. 2002. Vol. 76. P. 3374–3381.
- Gribencha S. V., Vanag K. A., Obukhova V. R., Shubladze A. K. Experimental studies of chronic rabies // Ann. Virol. (Institute of Pasteur). 1980. Vol. 131. P. 302–312.
- 9. *Gribencha S. V., Vanag K. A., Barinsky I. F.* Separation of 2 street rabies strain population into two biological variants //Acta Virol. 1981. Vol. 25. P. 168.
- Gribencha S. V., Gribanova L. Ja., Malkov G. B., Barinsky I. F. Population structure of some street rabies virus strains // Arch. Virol. 1989.
 Vol. 104. P. 347–350.
- 11. *Hooper D. G.* The role of immune response in the pathogenesis of ralnes // J. Neurovirol. 2005. Vol. 11. P. 88–92.
- Macfarlan R. I., Dietzschold B., Koprowsky H. et al. Stimulation of cytotoxic T-lyphocyte responses by rabies virus glycoprotein and identification of on immunodominant domain // Mol. Immunol. 1986. Vol. 23. P. 733–741.
- 13. Sarmento Luciana, Li Xia, Howerth Elizabeth et al. Glycoprofein mediated induction of opoptosis limits the spread of attenuated rabies viruses in the central nervous system of mice // J. Neurovirol. 2005. Vol. 11. P. 571–581.
- Wang Zhi W., Sarrmento L., Wang Y. et al. Attenuated Rabies virus activates while Pathogenic rabies virus evades, the host innate immune responses in the central nervous system // J. Virol. 2005. Vol. 79, N 19. P. 12554–12565.

Поступила 24.03.11