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Exosomes are extracellular vesicles of endosomal origin, with a bilayer membrane, 30-160 nm in diameter.
Exosomes are released from cells of different origins and are detected in various body fluids. They contain nucleic
acids, proteins, lipids, metabolites and can transfer the contents to recipient cells. Exosome biogenesis involves
cellular proteins of the Rab GTPase family and the ESCRT system, which regulate budding, vesicle transport,
molecule sorting, membrane fusion, formation of multivesicular bodies and exosome secretion. Exosomes are
released from cells infected with viruses and may contain viral DNA and RNA, as well as mRNA, microRNA,
other types of RNA, proteins and virions. Exosomes are capable of transferring viral components into uninfected
cells of various organs and tissues. This review analyzes the impact of exosomes on the life cycle of widespread
viruses that cause serious human diseases: human immunodeficiency virus (HIV-1), hepatitis B virus, hepatitis C
virus, SARS-CoV-2. Viruses are able to enter cells by endocytosis, use molecular and cellular pathways involving
Rab and ESCRT proteins to release exosomes and spread viral infections. It has been shown that exosomes
can have multidirectional effects on the pathogenesis of viral infections, suppressing or enhancing the course of
diseases. Exosomes can potentially be used in noninvasive diagnostics as biomarkers of the stage of infection,
and exosomes loaded with biomolecules and drugs — as therapeutic agents. Genetically modified exosomes are
promising candidates for new antiviral vaccines.
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OK30COMbI B XKU3HEHHOM LiMKIle BUPYCOB U NaTtoreHese
BUPYCHbIX UH(peKLUN

Kyw A.A.', MBaHoB A.N.2

'OIBY «HauunoHanbHbIN ccneaoBaTenbCKUn LEHTP 3NMAEMMONONMU U MUKPOBMONOrMN MMEHW NMOYETHOTO akageMuka
H.®. Namanen» Munagpasa Poccun, 123098, r. Mockea, Poccus;

20IBYH «UHCTUTYT MonekynspHoi 6uonorum um. B.A. SHrenbrapata Poccuiickon akagemuu Hayky, 119991, r. Mocksa,
Poccus

OK30COMbI — BHEKIIETOYHbIE BE3UKYMbl 9HAOCOMAarnbHOrO NPOUCXOXAEHUS C OBYXCIOWHOW MeMOpaHou, aname-
Tpom 30—160 HM. SK30COMbI BEICBODOXAKOTCSA U3 KNETOK PA3HOro NPOUCXOXAEHMS U ONPeaenstoTCs B Pa3nmyHbIX
B1oNorM4ecKmx XnaKocTax opraHuama. OHM coaepKaT KNEeTOUHbIE HYKINENHOBbIE KUCNOTbI, 6enkun, nunuapl, MeTa-
6onnTbl U MOTYT NepefaBaTh COAEPXUMOE KNeTkam-peumnmeHTaMm. B GrnoreHese aK30COM y4acTBYIOT KIMETOYHbIe
6enku cemenctBa Rab N'M®as n cuctemsl ESCRT, KOTOpble perynupyoT noYkoBaHue, TpaHCMNopT BE3NKYI, COPTU-
POBKY MOnekyr, cnmsHne membpaH, obpasoBaHne MynbTUBE3NKYNAPHbLIX TeNeL U CeKpeLmto 3K30CoM. M3 KneTok,
MH(ULMPOBaHHBIX BUPYCaMK, BbICBODOXAAKOTCA 3K30COMbI, KOTOPbIE coaepaT reHoMHble BupycHble HK 1 PHK,
a Tarke MPHK, mukpoPHK, apyrune Buabl PHK, 6enku n BUpMOHbI. SK30COMbI CMOCOGHbBI NEPEHOCUTEL BUPYCHbIE
KOMMOHEHTbI B HEMH(ULIMPOBAHHbIE KNETKW PasfnnyHbIX OpraHoB U TkaHel. B HacToswem o63ope npoaHanuau-
POBaHO BNUSIHNE 3K30COM Ha >XW3HEHHbIV LMK LUMPOKO pacrnpoCTpaHEHHbIX BUPYCOB, Bbi3blBaIOLLNX CEPbE3HbIE
3aboneBaHusi Yenoseka: BUPYC MMMyHoaeduumTa Yenoseka 1-ro Tuna, Bupyc renatuta B, Bupyc renatuta C,
SARS-CoV-2. Bupycbl cnocobHbl NpOHMKaTb B KMNETKM NYTEM SHAOLMUTO3a, MCMONb3YHT MOMEKYNSAPHbIE U Khe-
TOYHbIE NyTU ¢ yyacTuem 6enkoB Rab n ESCRT ansa BbICBOGOXAEHMSA 3K30COM U PacnpoOCTPaHEHUS BUPYCHbIX
MHdeKuUMIn. MNokasaHo, YTO 3K30COMbI MOTYT OKa3blBaTb pasHOHanpaBneHHble 4eNCTBUA Ha NaToreHe3 BUPYCHbIX
MH(EKUMIA, NOAABNAS UNU cnocobCTBYS pa3BUTUIO BbI3biBaEMbIX UMK 3aboneBaHni. Ok30COMbl NOTEHLUMANbHO
MOryT MCNOMNb30BaTLCA B HEMHBA3UBHOW AMArHOCTMKE Kak Buomapkepbl CTaaMn MHAEKLMU, a 9K30COMbI, Harpy-
XeHHble BroMoneKkynamm 1 nekapcTBEHHbIMU NpenapaTaMmu, — Kak TepaneBTudeckne cpeacTaa. FeHeTnyeckn mo-
AndULMPOBaHHbIE 9K30COMbI — MEPCMNEKTUBHbIE KaHANAATbI ANS HOBbIX MPOTUBOBUPYCHBIX BaKLIMH.

KntoueBble cnoBa: 0630p; 3K30COMbI; 8HEKIIEMOYHbIE 8e3UKY/bl; 3HOoyumo3; Rab 'M®a3bl; cucmema ESCRT;
9K304umo3; supyc ummyHodeghuyuma yeroseka; supyc eenamuma B; supyc eenamuma C;
SARS-CoV-2
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Introduction

Exosomes were first identified in the culture medium
of reticulocytes. In 1983, almost at the same time, two
research groups reported that in reticulocytes, transferrin
receptors associated with intracellular vesicles (approx-
imately 50 nm diameter-sized) were literally jettisoned
from maturing reticulocytes into the extracellular space
[1,2]. Harding et al. [1, 3] found that in cells, internalized
transferrin is located on numerous small particles within
organelles, which the authors referred to as multivesicu-
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lar endosomes. Multivesicular endosomes fuse with the
plasma membrane, leading to release (externalization) of
vesicles later renamed as exosomes [4]. It was assumed
that cells could use that mechanism as a universal pro-
cess of release of membrane vesicles. The discovery was
met with great interest among researchers, leading to
hundreds of publications on exosomes, the launch of the
scientific Journal of Extracellular Vesicles, the foundation
of specialty societies: The International Society for Ex-
tracellular Vesicles, The American Society for Exosomes
and Microvesicles.
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The review briefly touches upon the aspects of the bio-
genesis and functions of exosomes. Special attention is
given to the role of exosomes in viral infections.

Characterization of exosomes

Exosomes are extracellular vesicles (EVs) with a dou-
ble-layer membrane structure, a diameter of 30—-160 nm
(around 100 nm on average), and an endosomal origin.
The most common markers for exosomes include CD63,
CD81 and CD?9, flotillins, ceramides, TSG101 (tumor
susceptibility gene 101) and Alix (apoptosis-linked
gene 2 interacting protein X) [5, 6] (Fig. 1). Exosomes
have been found to contain lipids, proteins, all known
RNA species, metabolites [7, 8]. After release from the
cell surface, exosomes can interact with the extracellular
matrix and (or) enter into recipient cells [9]. Exosomes
are released by cells of different origin; they are found in
various body fluids: in blood plasma and serum, urine, ce-
rebrospinal fluid, breast milk, saliva, gastric acid, semen
and follicular fluid, and in feces [7, 10, 11]. These vesi-
cles are characterized by high heterogeneity in terms of
size and functions [12]. The content (cargo) of exosomes
varies and depends on the cellular origin, metabolic sta-
tus and environment of donor cells; therefore, there are
multiple subgroups of exosomes [8]. By transporting var-
ious bioactive molecules to recipient cells, exosomes can
participate in regulation of transcription and translation;
proliferation, reproduction, growth, cell differentiation,
pathological processes, including neoplasia [12, 13].

Improvement of the techniques used for isolation and
purification of vesicles is one of the major challenges in
exosome research and application. In addition to ultra-
centrifugation, density gradient centrifugation and ultra-
filtration, more advanced methods and tools have been
developed: the exosome total isolation chip (ExoTIC)
[14], the asymmetric-flow field-flow fractionation (AF4)
technology [15], the exosome-specific dual-patterned
immunofiltration (ExoDIF) device [16]. Recent meth-
ods used for exosome identification, size and content
evaluation employ electron microscopy and flow cytom-
etry [5]. The frequency of using nine different methods
for isolation and purification of exosomes was assessed
in 2019 and showed that studies employing immunoaffin-
ity techniques, fluorescence-activated cell sorting (FACS)
and polymer-based precipitation accounted approximate-
ly for 3—5%, density gradient centrifugation — 25%, fil-
tration — 34%, ultracentrifugation — 58% and differential
centrifugation — 73% of the total number of all the ana-
lyzed publications. While differential centrifugation re-
mains the most commonly used method, it has been noted
that most studies have employed a combination of these
methods [17]. Further improvement of exosome isolation
and purification methods is required for reliable classifi-
cation of exosomes and standardization of their applica-
tion. EVs can be divided into three main types depend-
ing on their cellular origin, density ranges, expression of
markers and size:

a) exosomes (30-150 nm);

b) microvesicles (100—1000 nm);

¢) apoptotic bodies (500-5000 nm) [18].
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Significant variations in the size of vesicles should be
taken into consideration [19]. In 2018, experts from The
International Society for Extracellular Vesicles published
guidelines recommending the term “extracellular vesi-
cles” or “EVs” as the most accurate term for the cases
when the biogenesis and distinct properties of the vesicles
had not been studied in detail, and they significantly var-
ied in size. The term “exosomes” is used to refer to small
EVs with diameter not larger than 200 nm [20]. However,
the purity of vesicles was not assessed in most studies,
and populations of vesicles could contain both exosomes
and microvesicles. Therefore, in our further discussion of
findings, we will use the terminology offered in original
publications.

Exosome biogenesis

After components of the external environment pen-
etrate the cell by endocytosis, the internalized materi-
al is delivered to early endosomes (EEs) (Fig. 2). The
subsequent maturation of EEs induces a decrease in pH
inside the organelle, accumulation of phosphatidylinosi-
tol-3-phosphate (PI3P) in the membrane, involvement
of some enzymes of the Rab family and their activation.
This is followed by the formation of late endosomes
(LEs). Like EEs, LEs perform cargo sorting as well as
sensing and signaling functions, responding to inter- and
extracellular situations [21]. The endosomal membrane
bends inwards to generate multiple intraluminal vesi-
cles (ILVs), which form multivesicular bodies (MVBs).

Fig. 1. Exosome biomarkers and content.

In the upper half are the main markers of exosomes: membrane proteins — tet-

raspanins CD9, CD63, CD81 and flotillins; lipids — ceramides, components of

the ESCRT system Alix u TSG101. In the lower half — viral components that

are captured by exosomes in infected cells — DNA or RNA, viral structural
and non-structural proteins and virions.

Puc. 1. Conepxumoe 3K30COM U OHOMapKEPHI.

B BepxHeil MoIoOBHHE — OCHOBHBIC MapKePhl SK30COM, MPEACTaBICHHBIC MEM-
OpanHbIME Oenkamu — TepacnanuHamu CD9, CD63, CD81 u ¢norwmnmiHa-
MH; JIMIUJaMH — LEPAMHUaMH, a TAK)Ke KOMIOHEHTaMH KJIETOYHOH CHCTEMBbI
ESCRT (Endosomal Sorting Complex Required for Transport): Alix (apoptosis-
linked gene 2 interacting protein X) u TSG101 — npoxykt Tumor Susceptibility
Gene 101 (#sg/01). B HIDKHEl TIONOBHHE — BUPYCHBIE KOMIIOHEHTHI, KOTOPBIE
3aXBaThIBAIOTCS SK30COMAMH B 3apaKEHHBIX KJIeTKax, — reHoMHble JIHK nin
PHK, BHpYCHBIE CTPYKTypHBIE 1 HECTPYKTypHBIE OCIIKH 1 BUPHOHEL
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From MVBs, internalized materials incorporated into
ILVs are transported along one of the three possible
pathways (Fig. 2): The first one — to the recycling endo-
somes for processing; then to the plasma membrane or
to the Golgi complex; the second one — to the lysosome
for fusion with the lysosome and subsequent degrada-
tion; the third one — to the plasma membrane for fusion

Fig. 2. Scheme of exosome biogenesis and participation of cellular
proteins of Rab family.

Molecules and microparticles that penetrate into the cell by endocytosis
are conventionally designated as a green triangle and a yellow circle. Rab5
participates in the fusion of endocytized vesicles to form an early endosome
(EE); Rab5 and Rab4 — to the late endosome (LE); Rab1 regulates transport
from the endoplasmic reticulum (ER) to the Golgi complex (GC). Rab2, on
the contrary, participates in recycling and retrograde transport from GC back
to ER. Rab6 regulates movements within GC. Rab7 regulates endosomal
transport from LE and multivesicular bodies (MVB) to the lysosome. Rab4
and Rabl1, as well as Rab 9 and Rab 25 regulate the processing of contents
in recycling endosomes (RCE) and transport to the plasma membrane (PM).
Rab27a and Rab35 are involved in the docking of MVB with the plasma
membrane; Rab 11 and Rab35 are involved in the release of vesicles. Rab5a
and Rab9a are also involved in the secretion of vesicles, enhancing the release
of exosomes.
Puc. 2. Cxema OuoreHnesa 3K30COM U y4acTHe KIETOUHBIX OEIKOB
cemeiicta Rab.

Mortekyibl 1 MUKPOYACTHUIIBI, TIPOHMKAIOIINE B KJIETKY ITyTEM 3HJOLUTO3a,
YCIIOBHO 0003HAYEHbI KaK 3eNIEHBIA TPEYTONIBHUK U KENTHIA KpykOkK. Rab5
y4acTBYET B CIIMSIHMH 3HJIOLUTHPOBAHHBIX BE3UKY C 00pa30BaHHEM paHHEH
sunocomsl (PD); Rab5 u Rab4 — tpancnopr k mo3nHel snnocome (I13); Rabl
PErylMpyeT TPaHCHOPT OT HAOILIa3MaTHYecKoro petukyayma (OP) k kom-
mwiekcy Tonmpmxu (KI'). Rab2 y4acTByeT B pelUMpPKYJSILIMM U PETPOrPaJHOM
tpancnopre ot KI' o6parHo k OP. Rab6 perymupyer nepemelneHus BHyTpH
KTI. Rab7 perynupyeT 3HA0COMaNbHBII Tpancnopt ot [13 u MynsTUBE3HKY-
msipubix Tener (MBT) k nu3ocome. Rab4 u Rabll, a taxke Rab 9 u Rab 25
PErynupyioT IepepaboTKy CONEPXKUMOTO B PENUKIHPYIOMNX YHIOCOMAax
(PLID) u TpaHCIIOPTHPOBKY K Iuta3Marnueckoil MmemOpane (IIM). Rab27a u
Rab35 yuactytor B cThikoBke MBT ¢ ma3marndeckoit MemOpanoii; Rab 11
u Rab35 — B BbICBOOOXKI€HNHN BE3UKYII. B cexperuy Be3UKyl y4acTBYIOT TaK-
ke RabSa u Rab9a, ycuniBas BEIX0[ 9K30COM.
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followed by the release in the form of exosomes into the
extracellular space.

The exosome biogenesis involves multiple cellular
proteins [22]. Rab proteins belonging to the family of
conserved GTPases of the Ras superfamily including
more than 60 members have been studied quite thor-
oughly; one cell can contain more than 40 different Rab
proteins [23]. The participation of some Rab proteins
in various stages of exosome biogenesis is shown in
Fig. 2. An important role in exosome biogenesis also
belons to proteins of the endosomal sorting complex re-
quired for transport (ESCRT), including ESCRT-0, -I,
-11, -IIT and accessory proteins, including ATPase Vps4.
ESCRT-0, -I and -II participate in selective sorting of
ubiquitinated molecules; the ESCRT-III and Vps4 com-
plexes participate in membrane invagination and forma-
tion of ILVs comprising MVBs [24].

Role of exosomes in viral infections

Studies have demonstrated that exosomes can contain
nucleic acids, proteins and even virions of enveloped vi-
ruses, which are transferred to recipient cells (Fig. 1). To
create conditions favorable for replication and spread,
viruses employ different strategies, affecting regulatory
mechanisms of the cell and the body, including exosome
biogenesis. The next sections of the review will focus
on the main findings showing the participation of exo-
somes in four most common and socially significant viral
infections caused by the human immunodeficiency virus
type 1 (HIV-1), hepatitis B virus (HBV), hepatitis C virus
(HCV) and SARS-CoV-2 coronavirus.

Exosomes and HIV-1 infection

After cells have been infected, HIV-1 recruits ESCRT-I,
-II and -III complexes, which participate in processes of
virus-cell interaction at different stages of the life cycle of
the virus [25]. Proteins of the ESCRT-I1 complex — TSG101
and Alix are recruited to the HIV-1 assembly site. The
same components are required to release HIV-1 from the
infected cell [26, 27]. The Gag protein of HIV-1 is involved
in the process of release from the cell, accumulating and
anchoring at the plasma membrane. Studies of TSG101,
the key component of ESCRT, using the CRISPR/Cas9
system in human cells infected with HIV-1 confirmed co-
localization of the Tsgl01 cellular protein with the HIV-1
Gag protein at the virus assembly sites. The inhibition of
TSG101 synthesis or overexpression of the TSG101 gene
severely impairs HIV-1 production by arresting the release
of new virions from membranes of infected cells. Thus, the
TSG101-HIV Gag interaction can be seen as a potential
target for antiviral therapy [28-30]. The assembly of viral
particles and secretion of exosomes are also regulated by
proteins of the Rab family [31].

Exosomes have opposing effects in HIV pathogenesis.
It has been found that exosomes released from T cells
contain large amounts of CD4+ molecules that compete
with host cells for binding to HIV-1 proteins, thus pre-
venting the spread of the virus. Exosomes isolated from
semen, breast milk and other body fluids can also have
an antiviral effect, inhibiting HIV-1 replication [32]. On
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the other hand, exosomes from HIV-1-infected cells can
induce activation of CD4+ T lymphocytes and virus rep-
lication as well as in latently infected cells, thus leading
to latent HIV reactivation from the viral reservoir in the
body [33].

Exosomes and hepatitis B virus

Despite the availability of an effective preventive
vaccine, hepatitis B remains a major public health
problem, as no curative treatment of chronic hepatitis
infection currently exists. This can partly be explained
by the absence of complete understanding of HBV
assembly and release pathways. It is believed that HBV
enters the cell through endocytosis; Rab5 and Rab7
participate in HBV internalization and transportation
from EEs to LEs [34]. Interestingly, at the late stages
of HBV replication, the same Rab7 facilitates the
transportation of viral particles to lysosomes for their
further degradation [35]. In addition to Rab proteins,
which act as molecular switches in vesicular transport
in HBV infection, the virus uses ESCRT protein
complexes [36, 37]. Note that intact HBV virions can
be released as exosomes and transferred not only to
susceptible, but also to insusceptible cells [38]. Thus,
for its own replication and spread, HBV exploits the
endocytic pathway involving Rab and ESCRT cellular
systems.

Studies have demonstrated that exosomes can play a
role in diagnosis and treatment of hepatitis B. Patients
with active HBV replication (HBeAg-positive) had
higher levels of some microRNAs (miRNAs) in plasma
EVs compared to HBeAg-negative patients, and the
levels of these miRNAs correlated with HBV DNA and
hepatitis B surface antigen (HBsAg) levels [39]. The
comparative study of exosomes in the blood of healthy
volunteers, HBV carriers and patients with chronic
hepatitis B led to the conclusion that exosomal miRNAs
can be used as biomarkers for detection of different
stages of HBV infection [40]. It has been observed
that the CD63 tetraspanin associated with ILVs and
exosomes colocalized with structural HBV proteins
LHBs and hepatitis B core (HBc). Suppression of CD63
expression by RNA interference demonstrated that
the CD63 tetraspanin plays an important role in HBV
assembly and infectivity [41]. Other researchers isolated
exosomes from the culture supernatant of HepAD38
hepatocytes with HBV replication (the cell line similar
to HepG2.2.15) and used them for treatment of human
peripheral blood mononuclear cells (PBMCs) [42].
Exosomes targeted monocytes, but not lymphocytes,
causing upregulation of PD-L1 expression on monocytes
and downregulation of expression of CD69, which is
a marker of activated immune cells. Consequently,
exosomes secreted by HepAD38 cells can induce
immune suppression, depletion of T cells and potentially
can contribute to progression of HBV infection. At the
same time, reverse transcriptase inhibitors (entecavir,
lamivudine and tenofovir) alter the contents of exosomes,
leading to reduction of the immunoregulatory potential
of the virus [42]. Further studies are required to provide
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a more detailed assessment of the impact of exosomes
on hepatitis B pathogenesis.

Exosomes and hepatitis C virus

HCV causes acute infection that in most cases
progresses into chronic hepatitis C (CHC), causing
fibrosis, cirrhosis and hepatocellular carcinoma.
Although more than 50 million people have CHC, there
is no vaccine against hepatitis C, while the high price
of direct-acting antivirals makes them unaffordable to
many patients; they do not protect from re-infection and
hepatocellular carcinoma recurrence after direct-acting
antiviral therapy. Therefore, the development of new
agents and, most importantly, the understanding of viral
disease pathogenesis require more thorough knowledge
of the virus life cycle and virus interaction with cellular
processes. The studies of the HCV life cycle have
demonstrated that the virus can be released from cells in
the form of exosomes through the endosomal pathway
[43, 44]. Two cell systems — ESCRT and Rab family
proteins — are involved in endosomal trafficking [45-48].
The active participation of Rab family proteins suggests
the prospect of using inhibitors that can suppress or block
HCYV infection. Such inhibitors have not been produced
so far; however, strategies for the control of Rab GTPases
are being looked for [49]. Envelope proteins and the
HCV core protein were detected in ILVs of MVBs and
were found to be also localized in exosomes, where
the ESCRT-0 HRS (hepatocyte growth factor-regulated
tyrosine kinase substrate) component is critical for release
of HCV in exosomes [50, 51]. Interestingly, HRS is also
required for secretion of exosomes from dendritic cells
and regulation of antigen-presentation activity through
exosomes [52]. The authors believe that deeper insights
into the interaction between HCV and ESCRT cellular
pathways can help select new targets for broad-spectrum
antiviral therapy [53]. The fact that exosomes contain
HCV structural and non-structural proteins as well as
RNA makes it possible to see exosomes as a source of
circulating biomarkers associated with pathological
processes in hepatitis C. This is especially important in
diagnosis of chronic hepatitis, considering that lack of
accuracy of the current non-invasive methods is seen
by international experts as a formidable obstacle for
successful treatment of chronic diseases [54, 55].

The contents of exosomes can vary significantly
depending on the nature of donor cells, physiological
state, changes in the intracellular activity, and
microenvironment. Thus, circulating exosomes derived
solely from liver cells are of special interest. Compared
to circulating proteins and RNA complexes, exosomes
are characterized by high stability in body fluids, which
is provided by lipid bilayer membranes. Note that
changes in exosomes can be detected at earlier stages
preceding apparent tissue damage or other clinical and
histological features, as it was found using the mouse
model of nonalcoholic steatohepatitis [56]. Diagnosis of
hepatitis C involves serological and molecular methods,
which are effectively used for assessment of the viral
load and immune status of a patient. Development of
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exosome-based diagnostic approaches can provide
efficient non-invasive tools for more extensive and
improved assessment of liver injury and for detection
of early markers of the increased risk of hepatocellular
carcinoma. Using exosomes as CHC biomarkers can be
a challenging task, as it is technically difficult to isolate
exosomes produced in liver cells from the large pool of
circulating exosomes [57]. Overcoming these challenges
will open up new possibilities in diagnosis of CHC,
including application of liquid biopsy.

Experiments have shown that purified exosomes isolat-
ed from HCV-infected human hepatoma Huh7.5.1 cells
contained full-length viral RNA, proteins and viral par-
ticles and were capable of transmitting productive HCV
infection to naive hepatocytes [58]. In addition, it was
found that antibodies from patients with hepatitis C only
partially neutralized HCV infection transmitted through
exosomes compared to the free virus. This suggests that
HCV transmission by exosomes can be a potential im-
mune evasion mechanism in hepatitis C [58]. The an-
swer to the question whether HCV can spread through
exosomes was looked for by analyzing if the virus could
use exosomes for receptor-independent transmission of
HCV to hepatocytes [59]. It was found that sera from
all HCV-infected non-responder (interferon (IFN) o2b +

ribavirin) patients and from some treatment-naive patients
had exosomes containing HCV negative sense RNA asso-
ciated with replication of viral RNA. It was found that in
exosomes HCV RNA was in complex with argonaute-2
(Ago2) protein, heat shock protein 90 (HSP90) and mi-
croRNA miR-122 (Fig. 3). The researchers believe that
their findings provide evidence for HCV transmission by
circulating exosomes and highlight potential therapeutic
strategies based on blocking exosomes from transmitting
HCYV infection. In the meantime, the discovery of the an-
tisense strand may not be indicative of exosome-mediat-
ed transmission of the virus, as its transfer to cells will not
provide virus genome translation and production of HCV
proteins — components of the replication complex. Note
that exosomes can also have the opposite effect. For ex-
ample, exosomes containing HCV RNA could transport
viral RNA to dendritic cells (pDCs); HCV RNA affected
TLR7, activated pDC, promoted the production and se-
cretion of IFN-q, thus causing inhibition of HCV replica-
tion and spread [60, 61].

Prospects of exosomes in hepatitis C treatment
The proteomic analysis identified around 250 pro-
teins in EVs isolated from primary rat hepatocytes [62].
Around 70 proteins were identified in circulating EVs

Fig. 3. Schematic representation of hepatitis C virus transmission through exosomes.

Exosomes containing HCV RNA in combination with microRNA (miR-122], heat shock protein HSP90 and argonaute-2 protein (Ago2) were found in the
blood sera of patients with hepatitis C. Exosomes are able to penetrate uninfected cells, including hepatocytes, by endocytosis. In hepatocytes that have captured
exosomes containing viral RNA, a productive HCV infection is observed, which can be transmitted through viral particles in the released exosomes. Thus, the
spread of the virus is possible through exosomes, bypassing cellular receptors. NC — HCV nucleocapsid, ER — endoplasmic reticulum, GC — Golgi complex,
MVB — multivesicular bodies, cocyn — vessel, 3k30coMbl — exosomes, renatonuT — hepatocyte, sapo — nucleus, sum01UTO3 — endocytosis, K30LHUTO3 — €XOCY-
tosis (according to T.N. Bukong, et al. [59]).
Puc. 3. Cxemarnueckoe mpeAcTaBlIeHHE Tepeaadn Bupyca renaruta C gyepes3 5K30COMBI.
B cpIBopoTKax KpoBH ManueHToB ¢ remarutoM C oOHapy:keHsI dk30coMel, comepxamue PHK BI'C B xommrekce ¢ MukpoPHK (miR-122), 6enxom TemIoBoro
moka HSP90 u 6enkom argonaute-2 (Ago2). DK30COMBI CIIOCOOHBI IPOHUKATH B HE3apaKEHHbBIE KICTKH, B TOM YHCIIC B TEMATOLUTEL, TyTEM SHAOLUTO3a. B re-
[AaTOLMTAX, 3aXBAaTHBILKX 9K30COMBI, cofepxamue BupycHyto PHK, nabmonaercs npoxykrusHast BI'C-nH(peKuus, KOTOpast MOXKET [epeaBaThCsi 4epe3 BUPYC-
HbIE YaCTHIIBI B BBICBOOOXKIAIOIIMXCS 3k30coMax. TakuMm 00pa3oM, paclpocTpaHEeHNnE BUPyca BO3MOXHO depe3 SK30COMBI, MHHYs Ki1eTouHble perenTopbl. HK —
nykieokarncuy BI'C, OP — sunomnasmaruueckuii petuxyiryM, KI' — xommnexe Tonsmkxu, MBT — mynmsruBesuxymspasie Tensia (mo T.N. Bukong u coasr. [59]).

186



BOMPOCHI BUPYCOJIOIMU. 2023; 68(3)
https://doi.org/10.36233/0507-4088-173

from healthy people; most of them participate in trans-
port of vesicles [63]. In addition to classical markers de-
tected in most of the EVs from other types of cells, exo-
somes from hepatocytes had specific components. More-
over, almost all types of immune cells, including T and
B lymphocytes, dendritic cells, macrophages, Kupffer
cells, and neutrophils, produce exosomes. Therefore, at-
tention should be given to the studies aimed at finding
out the relationship between pathological changes in the
liver and the contents of exosomes isolated from liver
cells of patients with hepatitis. Studies have demonstrat-
ed that EVs/exosomes released from hepatocytes, unlike
exosomes from other liver cells, have elevated levels of
cytochrome P450 isoform 2E1 (CYP 2E1) and asialogly-
coprotein receptor 1 [24]. It is assumed that the liver re-
leases CYP-containing EVs to promote drug metabolism
in other cells that absorb these vesicles. The publication
offers the list of molecules found in EV's, which are asso-
ciated with development of liver diseases [24]. Liver cells
can be both donors and recipients of exosomes, demon-
strating a complex interaction among different liver cells,
involving proteins, mRNAs and microRNAs. Exosomes
can be used as potential biomarkers in different liver dis-
eases [64]. In hepatitis C, exosomes isolated from sera
had increased levels of four miRs; in alcoholic hepatitis,
hepatocyte-derived exosomes contain miRs that are as-
sociated with hyperinflammation; in hepatocellular carci-
noma, exosomes were found to have CEACAM1/6 (car-
cinoembryonic antigen-related cell adhesion molecules)
associated with tumor progression [64].

It has been found that EVs have multiple advantages
over free proteins and nucleic acids, including the follow-
ing:

1) nucleic acids do not replicate after administration;

2) substances contained in exosomes can have lower
immunogenicity;

3) they possess an intrinsic ability to cross tissue and
cellular barriers;

4) they are resistant to degradation by proteases in cir-
culation and to freezing/thawing during long-term stor-
age [65].

One of the therapeutic approaches aimed at inhibition
of persistent HCV infection is offered in the following
publication [66]. It has been found that compounds dis-
rupting the endosomal pathway of exosome formation
and the release of vesicles from cells can significantly in-
hibit replication of the virus in Huh7.5 cells infected with
chimeric HCV containing the green fluorescent protein
(GFP), while having no effect on the viability of the cells.
Other approaches can be aimed at removal of circulating
exosomes containing virions or HCV RNA as well as at
prevention of their entry into target cells. “Harmful” exo-
somes can be removed from the circulation, for example,
using methods similar to removal of circulating antibodies
with extracorporeal dialysis. Other strategies for reduc-
tion or selection of specific types of exosomes have also
been described [67, 68]. Most of the studies of the role
of exosomes in treatment of hepatitis C have been per-
formed using mesenchymal stem/stromal cells (MSCs).
MSC-based cell therapy gains attention from many re-
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searchers; exogenous or activated endogenous MSCs
are used in more than 1,200 clinical trials [69]. Clinical
studies have demonstrated that MSC therapy alleviates
liver damage, improves liver function, and promotes liv-
er tissue regeneration. In acute or chronic liver failure,
treatment with MSCs leads to higher survival rates, has
good tolerance and safety rates [70]. In 2016, Qian et
al. were the first to demonstrate the ability of exosomes
produced by MSCs to inhibit HCV infection [71]. In the
above studies, exosomes secreted from umbilical MSCs
(uMSC-Exo0) were non-toxic and inhibited replication
of HCV in vitro. Specific miRs from the exosomes were
actively involved in the process. In addition, exosomes
from uMSC enhanced the effect of IFN-a and telaprevir
used for CHC treatment.

A serious challenge in the treatment of all liver diseas-
es, including hepatitis C, is posed by liver fibrosis that de-
velops following chronic liver injury. The key role in this
process is played by hepatic stellate cells (HSCs), which
are activated to become myofibroblasts promoting depo-
sition of extracellular matrix in the liver and, consequent-
ly, progression of fibrosis [72]. EVs and exosomes can
play controversial roles in liver fibrosis. The authors [73]
demonstrated that miR-19a from HCV-infected hepato-
cytes activated the STAT3-TGFp pathway by activating
HSCs. MiR-192 from HCV-infected cells was also able
to activate HSCs through TGFf upregulation in stellate
cells [74]. Other studies demonstrated opposite effects.
The exosomes derived from human liver stem cells in-
hibited profibrotic activity of stellate cells in vivo [75],
and that effect was associated with delivery of antifi-
brotic miR-146a-5p through exosomes [76]. It has been
reported that bone marrow MSC-derived exosomes can
inhibit activation of HSCs in vivo and in vitro through the
Wnt/B-catenin pathway [77]. It has been found that miR-
486-5p contained in exosomes from human tonsil-de-
rived MSCs binds to the 3’ untranslated region (UTR)
of SMO mRNA and inhibits its expression, thus causing
inactivation of HSCs [78]. Down-regulated miR-150-5p
and elevated chemokine CXCL1 expression levels were
detected in liver fibrosis. The transfer of miR-150-5p to
HSCs through EVs derived from MSCs, inhibited activa-
tion of HSCs by inhibiting the CXCL1 expression [79].
Serum EVs from normal mice were administered to mice
with experimentally induced liver fibrosis, resulting in
reduced levels of hepatocyte death, inflammation, as-
partate aminotransferase/alanine aminotransferase levels
and pro-inflammatory cytokines in the liver and periph-
eral blood. Serum EVs from fibrotic mice did not have
such effects [80]. It was found that activated HSCs were
the primary targets for EVs. Levels of some miRs were
higher in EVs from normal mice compared to EVs from
fibrotic mice. Each miR was able to individually suppress
fibrogenic gene expression in activated HSCs. Similar
features were demonstrated by activated human HSCs:
serum EVs from healthy people downregulated activation
of HSCs and contained higher miR levels than EVs from
patients with liver fibrosis.

The analysis of the role of EVs/exosomes in liver fibro-
sis suggests that:
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1) HSCs and fibrosis development can be affected by
EVs and exosomes from various sources — MSCs, he-
patocytes, plasma, immune cells;

2) EVs and exosomes carry and transfer biologically
active molecules, including proteins, mRNA, miR to ac-
tivated HSCs;

3) EVs and exosomes that entered activated HSCs can
inhibit molecular pathways, which involve LPS/TLR,
STAT3/Bcl-2/Beclin-1, TGF/SMAD, Wnt/Beta-catenin
etc.;

4) in liver fibrosis, the EV uptake by activated HSCs
reduces HSC proliferation, decreases collagen maturation
and pro-inflammatory cytokine levels, and upregulated
autophagy.

Thus, myofibroblasts can revert to a quiescent state
[81]. It has been assumed that serum EVs and exosomes
from healthy individuals are inherently anti-fibrogenic
and anti-fibrotic, and contain miRs that have therapeutic
actions in activated stellate cells or injured hepatocytes
[80]. It has been noted that specific alterations in the miR
profile in EVs can be seen as potential diagnostic bio-
markers to differentiate between different types and stag-
es of progression of chronic hepatitis [82]. At the same
time, the findings [83] have shown that EVs/exosomes
containing certain miRs can also be seen as potential
therapeutic agents. Interesting observations were made in
studies of natural killer cells (NK cells) that participate
in HSC activation [84] and can affect functions of target
cells through exosome secretion [85]. It has been found
that NK cells (NK-92MI cell line) excrete exosomes

(NK-Exos). After their purification, NK-Exos were added
to the culture containing activated human HSCs of the
LX-2 cell line as well as injected into mice with CCl4-in-
duced fibrosis (Fig. 4). The NK-Exo treatment signifi-
cantly inhibited HSC proliferation and activation in vitro.
Moreover, NK-Exos alleviated liver fibrosis in mice [86].
Presumably, the effect was associated with miR-223 that
was highly expressed in exosomes released from NK-
Exos. Indeed, the inhibition of miR-223 expression in
NK-Exo significantly abrogated the inhibitory effect of
NK-Exo on HSC activation. Using the TargetScan soft-
ware, ATG7, one of the autophagy markers, was identi-
fied as a putative target of miR-223 [87]. The assay con-
firmed that ATG7 was a direct target of miR-223. Since
autophagy can be involved in HSC activation, it can be
concluded that exosomes from NK cells inhibit HSC
activation by transferring miR-223 that inhibited auto-
phagy via targeting ATG7 [88]. These findings correlate
with the studies demonstrating that inhibition of autoph-
agy inhibits development of liver fibrosis [89, 90]. The
obtained results highlight prospects for further research
focused on development of an exosome-based delivery
system for treatment of liver diseases, including chronic
viral hepatitis. At the same time, it is still unclear how
recipient cells recognize EVs and how EVs interact with
target cells in vivo. Some authors mention different mol-
ecules on the surface of recipient cells that EVs can bind
to [91]. The in vivo model was developed to study EV
functions by expressing CD63-pHluorin in zebrafish em-
bryos. Having detected exosomes in the circulation, the

Fig. 4. Exosomes from natural killer (NK) cells reduce the level of experimental liver fibrosis.

Inactive human hepatic stellate cells of the LX-2 line were activated with TGF-B1 and then treated with exosomes isolated from NK cells — NK-Exo exosomes.

As a result, human liver stellate cells activity was suppressed. The injection of NK-Exo into mice with experimentally induced fibrosis led to a decrease in the

level of fibrosis. The antifibrotic effect of NK-Exo was associated with a high level of miR-223 expression directed at the autophagy protein ATG7 and suppres-
sion of its function. The blockade of autophagy caused a decrease in the level of liver fibrosis (according to L. Wang, et al. [86, 88]).

Puc. 4. Dx30coMBI 13 KIIETOK HaTypasbHEIX KintepoB (NK) CHIDKAIOT ypOBeHb  3KCIIEPUMEHTANBEHOTO (rOpo3a MedeH .

HeakTuBHBIE CcTEIaTHBIC KJICTKU IeUeHH 4yenoBeka quHuu LX-2 akruBupoBany ¢ nomousio TGF-B1 u 3arem oOpabaTeiBamy 3K30COMaMH, BBIICICHHBIMU U3

kietok NK — NK-Exo. B pesysnbrare akTHBHOCTB CTEIUIATHBIX KIIETOK Obuia noaasieHa. Beenenne NK-Exo MbliaM ¢ 9KCIIEpUMEHTANBHO BBI3BAHHBIM (HHOPO-

30M IPUBOAMIIO K CHIDKEHHIO ypoBHs (hubpo3a. AnTuduodposnoe neiicteue NK-Exo accormupoBanock ¢ BEICOKHMM ypoBHeM 3kcripeccu MUKpoPHK miR-223,

HarpaBiieHHOW Ha Oenok ayTodaruu ATG7 u nonasnenue ero ¢yHkimu. biokana ayrodarum BeI3bIBaia CHIDKCHUE YpoBHs (GuoOpo3a nedenu (mo L. Wang u
coasr. [86, 88]).
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authors concluded that exosomes were endocytosed by
patrolling macrophages and endothelial cells in the cau-
dal vein plexus [92]. The role of macrophages in exosome
recognition was also pointed out in the mice-involving
study [93], that demonstrated the importance of phospha-
tidylserine-derived negative charges in exosome mem-
branes in recognition of intravenously injected exosomes
by macrophages.

Authors studying exosomes, EVs, and EVs isolated
from MSCs (MSC-EVs) point out growing interest in the
role of MSC-EVs in liver diseases [94]. MSC-EVs are
more convenient and less immunogenic than MSCs; they
do not engraft, have intrinsic liver tropism, do not cause
aberrant stem cell differentiation, have low immunoge-
nicity and no risk of tumorigenicity. MSC-EV-based cell-
free therapy as well as EVs modified with antiviral mole-
cules open up new avenues for treatment of liver diseases.

Exosomes in hepatitis C prevention

Exosomes can be seen as potential vaccines due to their
properties. However, there have been only a few studies
addressing this prospect. It has been noted that exosomes
can improve distribution of antigens due to their ability
to circulate in body fluids and reach distal organs [95].
It has been found that HCV RNA-containing exosomes
from HCV infected cells can induce IFN-a production in
uninfected plasmacytoid dendritic cells [60]. Exosomal
export of viral RNA can serve as a viral strategy to evade
pathogen detection and as host strategies to induce an im-
mune response. It has been demonstrated that exosomes
can enter hepatocytes infected with hepatitis B virus and
transmit IFN-q, activating the respective antiviral cascade
[96]. These and other findings suggest that exosomes can
be not only antigen transmitters, but also inducers of an
immune response.

Exosomes and coronavirus infection

Coronaviruses can enter cells by direct fusion of the
virus membrane with the plasma membrane of cells or by
endocytosis. There are findings suggesting that exosomes
may participate in the entry of coronavirus into target cells.
It has been found that protein complexes with cellular
receptors of coronaviruses and TMPRSS2 protease
contain CD9 tetraspanins, which, along with CD81 and
CD63, are an integral part of exosome membranes [97].
The complexes play an important role in the fast and
efficient entry of coronaviruses. In the absence of CD9,
viruses use cathepsins to enter cells, though much later
and less efficiently [98]. Exosomes released from cells
infected with coronavirus can facilitate virus entry into
uninfected cells by transferring CD9 molecules.

Exosomes in the pathogenesis of COVID-19

Exosomes from patients with COVID-19 can con-
tain viral RNA, proteins, and even SARS-CoV-2 vi-
rions [99, 100]. One of the studies in this field [101]
was performed using exosomes isolated from plasma
from 20 patients with COVID-19 and 8 healthy vol-
unteers; the proteomic analysis was used to analyze
exosomes. 163 proteins out of 1637 identified proteins
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were shortlisted as having more counts compared with
exosomes from healthy individuals. Two proteins — te-
nascin-C (TNC) and fibrinogen-p (FGB) demonstrated
especially significant changes in their contents — more
than 200-fold and 700-fold, respectively. Immortalized
hepatocytes IHHs and Huh7s were used to identify the
possibility of exome content transfer to other cells. Cells
of both cell lines had TNC and FGB, and higher counts
of these proteins were detected in hepatocytes treated
with exosomes from patients with COVID-19. The pos-
sibility of association between exosomes and inflamma-
tion was analyzed, considering that TNC is an immuno-
modulator that can induce chronic inflammation [102],
and elevated levels of FGB in blood are associated with
vascular disorders observed in patients with COVID-19.
The analysis focused on expression of tumor necrosis
factor-a (TNF-a), interleukin 6 (IL-6) and chemokine
ligand 5 (CCL5) in hepatocytes exposed to exosomes
from patients with COVID-19 and from healthy indi-
viduals. It was found out that the expression of cyto-
kines and chemokine in hepatocytes was significantly
increased only after treatment with exosomes from pa-
tients with COVID-19 and was associated with NF-kB
activation in hepatocytes (Fig. 5 a). These findings
imply that exosomes from plasma from patients with
COVID-19 can potentially induce production of pro-in-
flammatory cytokines and promote clinical manifesta-
tions of the SARS-CoV-2-associated disease not only in
lungs, but also in hepatocytes — cells of a distant organ.
This conclusion is supported by observations regarding
extrapulmonary manifestations of COVID-19 [103].
The role of EVs/exosomes in SARS-CoV-2 infection
was studied using tests with A549 lung epithelial cells
[104]. It was reported that after transduction with lenti-
virus encoding two nonstructural (Nspl and Nsp12) and
two structural (envelope E and nucleocapsid N) SARS-
CoV-2 proteins, EVs isolated from A549 cells were found
to contain viral RNA (Fig. 5 ). EVs were used for treat-
ment of cardiomyocytes derived from human induced
pluripotent stem cells (hiPSC-CMs). The qRT-PCR test
detected mRNAs of all four viral genes in cardiomy-
ocytes. Moreover, the expression of pro-inflammatory
genes IL-1B, IL-6 and MCP1 was significantly increased
in cardiomyocytes containing Nsp1. The findings indicate
that the cells that do not express ACE2 SARS-CoV-2 re-
ceptors can receive viral genetic information by taking
up EVs/exosomes, and the expression of viral genes can
contribute to inflammation, being typical of the pathogen-
esis of COVID-19. At the same time, EVs/exosomes can
deliver ACE2 to cells with absent or poor expression of
SARS-CoV-2 receptors by transporting the protein from
other cells [105]. Exosomes containing ACE2 (ACE2+)
were identified in plasma from patients with COVID-19
and it was found [106] that ACE2+ exosomes competed
with cellular ACE2 for SARS-CoV-2 neutralization by
inhibiting binding of the viral S protein to ACE2+ cells in
a dose dependent manner (Fig. 5 ¢). Exosomes containing
ACE2 were 120-135 times more efficient blocking the re-
ceptor-binding domain (RBD) of S protein compared to
vesicle-free recombinant human ACE2 (rhACE2) [107].
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Furthermore, ACE2+ exosomes were 60—80 times more
efficient in protecting transgenic mice expressing human
ace2 gene from lung injury and death after intranasal in-
oculation of SARS-CoV-2. ACE2+ exosomes inhibited
infection with SARS-CoV-2 a, B and § variants having
mutations in RBD, demonstrating the same or higher ef-
fectiveness than wild-type strain. These findings showed
that exosomes containing ACE2 can serve as a basis
for development of broad-spectrum therapeutic agents
against emerging and re-emerging coronaviruses using
the ACE2 receptor [108].

Interesting results were obtained in studies involving
patients with different severity of COVID-19 [109]. They
presented quantitative data of studying 1002 metabo-
lites in plasma, showing a significant increase in levels
of GM3 gangliosides, which correlated with the decrease
in counts of circulating CD4+ T cells in patients with
COVID-19 and the progressive increase in indices of sys-
temic inflammation, including C-reactive protein, 1L-6,
erythrocyte sedimentation rate, serum ferritin and procal-
citonin as the disease severity increased. The comparative
analysis revealed a strong correlation between the disease
severity and the detection of ganglioside (GM3)-enriched
exosomes in sera (Fig. 5 d). It was found that GD3s ex-
pressed on the surface of exosomes in the tumor microen-
vironment inhibited functions of T cells, contributing to
immunosuppression [110]. Gangliosides are found in all
vertebrate cells; they are expressed on the outer surface
of plasma membranes [111], bind specifically to regula-
tory proteins and other molecules, modulate the activity
of membrane proteins and act as receptors in intercellu-
lar interactions; they are targets for pathogens, including
SARS-CoV-2 [112]. Thus, ganglioside-containing exo-
somes detected in the circulation can worsen COVID-19
by disrupting cellular regulatory pathways and the im-
mune response [113].

Formation of blood clots is one of the symptoms of
COVID-19. The clinical study showed that patients with
COVID-19 had circulating EVs containing active CD142
molecules closely associated with increased procoagulant
activity (Fig. 5 e). The release of CD142-containing EVs
from endothelial cells is associated with pro-inflammato-
ry activity [114]. In COVID-19, the vascular system is al-
so affected by CD142-loaded EVs from platelets. Counts
of such vesicles significantly increase in the circulation of
patients with COVID-19. The direct relationship between
circulating platelet-derived EVs and the disease severity
has been found, serving as a ground for offering these
vesicles as biomarkers to be used in prediction of out-
comes in patients with COVID-19 [99, 115-117].

Therefore, we can conclude that the participation of
exosomes isolated from cells of patients infected with
SARS-CoV-2 in the pathogenesis of COVID-19 depends
on:

a) levels of viral RNA, proteins and virions;

b) transport of viral components from the entry points
(respiratory epithelium) to other organs;

c¢) the ability to alter the expression of cellular genes
involved in the pathogenesis COVID-19;

d) increased vascular dysfunction and cytokine storm.
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Exosomes in treatment and prevention of COVID-19

The wide range of currently available vaccines de-
creases the burden of SARS-CoV-2 infection; however,
a significant number of patients who develop pneumonia
and other serious diseases still need treatment. Among
numerous agents and strategies offered for therapy by
different researchers, dozens of publications and clinical
trials are focused on studying of the possible use of MSCs
of various origins [69]. It has been found that MSCs in-
hibit inflammation, improve lung functions, do not cause
side effects, and significantly reduce mortality among
patients with COVID-19 [118]. The authors have con-
cluded that MSCs are a safe and effective tool for treat-
ment of COVID-19. Studies are not over, as none of the
tested products has been approved for use in treatment of
COVID-19.

Lately, the attention of researchers has been attracted by
cell-free therapy that has a number of advantages over the
MSC-therapy [119]. It employs MSCs secretome (a set
of factors and biomolecules secreted by cells) and EVs/
exosomes released from MSCs. The analysis of the effect
of the MSCs secretome on injured rat lungs demonstrated
the improvement in the lung architecture, a decrease in
0o-SMA and reduction in collagen levels. This led to the
assumption that the MSCs secretome can launch a new
therapeutic approach to treatment of such severe compli-
cations of COVID-19 as pulmonary fibrosis [120].

The findings of the researchers who analyzed the role
of exosomes in severe lung damage paved the way for
using exosomes for treatment of COVID-19. The results
obtained during some studies showed that EVs/exosomes
derived from human bone marrow MSCs have a benefi-
cial therapeutic effect in acute lung injury and acute re-
spiratory distress syndrome in laboratory animals [121].
Thanks to the presence of biologically active molecules
in exosomes, these vesicles can activate the regeneration
of injured tissues, suppress the production of inflamma-
tory cytokines, and modulate functions of immune cells
[122].

One of the advantages of exosomes is associated with
their ability to penetrate various organs and tissues,
thus demonstrating their capacity as therapeutic agents
for aerosol inhalation (nebulizer therapy) [123, 124].
It has been demonstrated that inhalation of secretome
and exosomes obtained by culturing cells from mouse
lungs containing epithelial, progenitor cells, and MSCs
can facilitate lung recovery in fibrosis. The collagen
accumulation and the myofibroblast proliferation start
decreasing; the normal alveolar structure of the lungs is
reestablished [125]. The inhalation method of adminis-
tration is less painful; it has a faster effect, and at lower
doses, demonstrates the same effect as oral or injection
therapy [121].

It has been noted that EVs/exosomes can have both a
positive and a negative role in coronavirus infection. On
the one hand, EVs can inhibit and prevent infection, as it
was shown by the example of EVs containing ACE2 or
ACE2 + TMPRSS2 [126, 127]. On the other hand, EVs
can promote viral infection by trapping and spreading the
virus or viral components and protecting them from the
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Fig. 5. Exosomes in the pathogenesis of COVID-19:

a— exosomes secreted by cells infected with SARS-CoV-2 are enriched with tenascin-C (TNC) and fibrinogen- (FGB) and, penetrating into hepatocytes, initiate
the production of TNF-a, IL-6 and CCL5 in hepatocytes (according to S. Sur, et al. [101]);
b — exosomes containing SARS-CoV-2 genes were introduced into the culture of cardiomyocytes and the expression of viral genes and a significant increase in the
expression of proinflammatory cytokines and chemokines were observed in cardiomyocytes (according to Y. Kwon, et al. [104];
¢ — cell receptor ACE2 interacts with the receptor-binding domain (RBD) of SARS-CoV-2 S protein, causing cell infection (left); exosomes containing ACE2
were found in the blood of patients with COVID-19. They competed with the ACE2 cell receptor, blocking the binding of S protein to cells and neutralizing the
infectious activity of the virus (right) (according to L. El-Shennawy, et al. [107]);

d — in the blood sera of patients with COVID-19, an increase in the number of exosomes carrying GM3 gangliosides on the surface was found. The presence of
GM3-exosomes was accompanied by an increase in C-reactive protein (CRP), interleukin 6 (IL-6) and ESR rate, a decrease in the number of CD4" cells, and also
correlated with the severity of the disease (according to J.W. Song et al. [109]);

e — exosomes released from endothelial cells and platelets into circulation of patients with COVID-19 contain active CD142 molecules and have increased
pro-inflammatory and procoagulant activity, directly related to the severity of the disease (according to W. Holnthoner, et al. [114] and C. Balbi, et al. [115]).

Puc. 5. Yuacrtue sx30coM B narorenese COVID-19:

a — 9K30COMBI, CEKpeTHpyeMble KieTkamu, nHpuuupoBanHbiMi SARS-CoV-2, oboramens! TeHactiuHoM-C (TNC) u ¢pudpunorenom-f (FGB) u, nponukas B
renarouThl, MHUOUUPYOT npoaykimioo TNF-a, IL-6 u CCL5 B renarormrax (1o S. Sur u coasr. [101]);
6 — sx30coMbl, coepxkaBiuue resl SARS-CoV-2, BHOCHIIHN B KYJIBTYpY KapAMOMHOLIUTOB U HAOIIOAAIM B HUX 3KCIIPECCUIO BUPYCHBIX T€HOB M 3HAUYUTEIILHOE
YBEJIMUYCHHUE SKCIPECCUH T'EHOB MTPOBOCHIANNTENBHBIX IIMTOKMHOB U XeMOKHHOB (110 Y. Kwon u coasr. [104]);

B — Kkietouynslid perentop ACE2, B3aumoneicTByeT ¢ penentop-cBssbiBaronm gomMeHoM (RBD) S-6enka SARS-CoV-2, 4To BBI3BIBAaET 3apaK€eHHE KIETOK
(cneBa); B kpoBu narueHToB ¢ COVID-19 oOHapy:xuitu sx30combl, copepxainne ACE2, v mokasaiu, 4To OHU KOHKYPHPYIOT ¢ KiIeTouHbIM perenitopom ACE2,
Onokupys cBs3biBanue S-6enka ¢ ACE2 kietok u HeWTpanu3yst MH(EKIMOHHYI0 aKTHBHOCTB Bupyca (crpasa) (o L. ElI-Shennawy u coasrt. [107]);

I' — B CBIBOPOTKaxX KpoBH maipeHToB ¢ COVID-19 o0Hapy kWi yBEIMYCHHE KOIMYECTBA IK30COM, HECYIIMX Ha MOBEPXHOCTH raHnIHo3u161 GM3, pUcyTCTBHE KO-
TOPBIX COMPOBOXKAATIOCH yBenmuenneM C-peakruHoro Oenka (CPB), untepneiikuna 6 (IL-6) u ckopoctu ocenanus sputpountoB (COD), CHUKEHHEM KOJIMYECTBa
CD4*-KJIeTOK, a TaKKe KOPPEIUpOBaIo CO CTEIEHbIO TshkecTH 3abonesanus (1o J.W. Song u coasr. [109]);

Il — 9K30COMBI, BHICBOOOKIAIOIINECS U3 SHIOTEIHAIBHBIX KJIETOK U TPOMOOLMTOB B LUPKYIsiuio y nanueHtoB ¢ COVID-19, copepxar aKTUBHBIE MOJICKYJIbI
CD142 u 061afaioT MOBBIICHHONH NPOBOCHAINTENILHON U MPOKOATYISTHTHOW aKTHBHOCTBIO, IIPSIMO CBSI3aHBI ¢ TshKecThio 3a0oneBanus (o W. Holnthoner u
coasr. [114] u C. Balbi u coasr. [115]).
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immune system. Moreover, it has been assumed that the
peripheral blood of patients with SARS-CoV-2 contains
antagonistic exosomes, which can reduce the virus-neu-
tralizing ability of plasma of convalescents and may act
as a competing inhibitor of neutralizing antibodies [128].

Exosomes are used in clinical studies focusing on treat-
ment of COVID-19 [129]. The potential of exosomes is
assessed in three aspects:

1) as vesicles secreted by MSCs from various sources;

2) as vesicles containing specific microRNAs and
mRNAs;

3) as vesicles delivering drugs for treatment of
COVID-19.

As commercial exosome products are coming on stage,
they are also included in studies of treatment effectiveness.
For example, studies were performed addressing safety
and efficacy of application of exosomes (ExoFlo) derived
from allogeneic bone marrow MSCs in the treatment
of 24 patients with severe COVID-19, moderate and
severe acute respiratory distress syndrome [130]. The
intravenous administration of ExoFlo demonstrated the
safety of the product, its ability to restore oxygenation,
to inhibit the cytokine storm and to re-establish the
immunity. The authors have concluded that ExoFlo is
a highly promising therapeutic product candidate for
severe COVID-19. Summing up the data on the effect
of exosomes on various cells in lung tissue infected with
SARS-CoV-2, the authors concluded [129] that exosomes
can: a) interact both with the SARS-CoV-2 S protein and
with the ACE2 cell receptor, competitively inhibiting
the virus entry; b) decrease levels of pro-inflammatory
cytokines in vessel and alveolar cells; improve functions
of macrophages, interferons, and B cells, modulating
immune responses. These findings provide a clear proof
that exosomes are promising candidates for development
of vaccines.

The S protein of SARS-CoV-1 that caused the
SARS outbreak in 2002-2003 came to the fore when
the possibility of using exosomes for development of
vaccines against coronaviruses was first considered
[131]. The exosome-based products containing the
S protein were administered to mice and demonstrated that
two doses of injections of exosomes without adjuvants
were sufficient for inducing neutralizing antibodies
against the coronavirus. The highest effect was achieved
when the immunization with exosomes was followed by
the immunization with the adenoviral vector expressing
S protein. The neutralizing activity of antibodies in sera
from the immunized mice and their activity in sera from
convalescent patients with pneumonia caused by SARS-
CoV-1 were compared. It was found that after the first
immunization with the exosome-based vaccine and the
booster immunization with the adenoviral vector, the
neutralizing activity of antibodies exceeded the activity
observed in the sera from the convalescent patients. The
highly effective induction of a humoral response to the
exosome vaccine containing the SARS-CoV-2 S protein
demonstrated the feasibility of the further studies of
protective properties of novel exosome vaccines capable
of preventing coronavirus infections.

192

Most of the vaccines used against SARS-CoV-2 are
intended for intramuscular injection [132]. In 2022, the
development and preclinical trial of the inhalable vaccine
against COVID-19 were announced; after lyophilization,
the vaccine remains stable at room temperature for more
than three months [133]. The vaccine consists of a
SARS-CoV-2 RBD conjugated to human lung-derived
exosomes (Fig. 6). This design of the vaccine (exosomes
containing RBD on the membrane) increases the RBD
retention up to 21 days both in the respiratory mucosa
and the lung parenchyma. The inhalation of the vaccine
by mice produced specific IgG antibodies against RBD
in blood and IgA antibodies in mucosa. The induction
of CD4" and CD8" T cells expressing pro-inflammatory
cytokines was observed in the lungs of the animals and
their clearance from the SARS-CoV-2 pseudovirus
after the infection. In hamsters, two doses of the
vaccine alleviated the severe pneumonia and reduced
the inflammatory infiltrates after the infection with live
SARS-CoV-2. Exosomes containing a recombinant
SARS-CoV-2 RBD (rRBD) on their membrane should
be tested further as a candidate inhalable vaccine against
COVID-19. The advantages of the inhalable vaccine can
include the natural origin of nanoparticles — exosomes
carrying viral antigen; fast and direct delivery of
exosomes to the respiratory mucosa; absence of storage
and shipping temperature limitations, and non-invasive
method of application.

Conclusion

Assessing the role of exosomes in viral infections, their
dual role should be pointed out. The ability to take up
and transport viral RNA and DNA genomes, proteins and
viral particles to uninfected cells can promote genetic
cooperation between viral quasispecies, improve their
fitness and extend their length of stay in the body. EVs/
exosomes were called Trojan horses in viral infection due
to their properties [134, 135]. Indeed, viruses can employ
exosomes to propagate and enhance the infection as well
as to be protected from the host immune response. In the
meantime, there are findings evidencing the ability of
exosomes to counteract viral infections. For example, it
has been found that exosomes contain numerous antiviral
factors that inhibit HIV-1 replication [136] by affecting
the viral 7at gene and its complexes with cell genes
[137, 138]. The positive role of exosomes produced by
MSCs has been observed in clinical trials addressing
acute respiratory infections [139, 140]. Exosomes isolated
from culture of primary human trophoblasts provided
resistance of recipient cells to a number of known viruses,
including vaccinia virus, herpes simplex virus type 1 and
cytomegalovirus.

Thus, the processes involving exosomes can have both
a positive and a negative role in the pathogenesis of viral
infections, either contributing to infection or inhibiting
its development [141]. One of the important approaches
to application of exosomes focuses on exosome-specific
markers of viruses and viral infections, thus offering
prospects for using exosomes as liquid biopsy and non-
invasive diagnostics. With their natural origin from human
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Fig. 6. Schematic representation of the preparation and effects of the inhaled vaccine against SARS-CoV-2.

S protein SARS-CoV-2 contains a receptor binding domain (RBD). Recombinant protein RBD (rRBD) has been prepared. Human lung cells were obtained

by minimal invasive biopsy and three-dimensional cultivation, from which exosomes were isolated. The exosomes were conjugated with rRBD, which was

localized on the membrane of the exosome. Exosomes were injected into mice and hamsters by inhalation. In mice, the exosomal vaccine induced the induction

of IgG and mucosal IgA anti—-RBD antibodies, an increase in the number of CD4* and CD8" cells, and virus clearance after infection with SARS-CoV-2. In
hamsters, the vaccine weakened severe pneumonia caused by coronavirus (Adapted with modification from Z. Wang, et al. [186]).

Puc. 6. Cxemarmueckoe n3o0paxeHHe NOTydeHHS U JeHCTBHUS
UHTISIIUOHHOM BakIMHBI TpoTHB SARS-CoV-2.

S-6enok SARS-CoV-2 comepxur nomeH, cBsasbiBatonuii peuentop (RBD). IMonyuen pexomOunantueiii 6enok RBD (rRBD). Metogom MajonHBa3HBHOM
OuomcHM U TPEXMEPHOIo KyIGTUBHPOBAHUS IONyJald KISTKH JIETKOTO YelOBEeKa, U3 KOTOPBIX BBIACISUIM 3K30COMBL. JK30COMBI KOHBIOTHpoBamH ¢ rRBD
SARS-CoV-2, koTOpbIii JIOKAIH30BaJICSI HA MEMOpaHe 3K30COMBIL. [yTeM HHra/sIuy 3K30COMbI BBOAMIHM MBILIAM U XOMSKaM. Y MBIIIEH 9K30COMHasl BaKIL[HHA
BBI3bIBaIa HHAYKIUIO aHTH-RBD anturen xinaccos IgG u Myko3HbIX — IgA, yBennuenue xonudectsa kiteTtok CD4™ u CD8" u xiupeHe BHpyca IOCIe 3apaKeHns
SARS-CoV-2. Y XOMSKOB BaKIMHA OCJIA0IsIIa TSHKEIYIO THEBMOHHIO, BEI3BAHHYIO KOpoHaBHpycoM (1o Z. Wang u u coasr. [186], moauduuuposaHo).
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